Algebra Examples

Solve for P₁ natural log of P_2/P_1=-H/R*(1/T_2-1/T_1)
ln(P2P1)=-HR(1T2-1T1)ln(P2P1)=HR(1T21T1)
Step 1
To solve for P1, rewrite the equation using properties of logarithms.
eln(P2P1)=e-HR(1T2-1T1)
Step 2
Rewrite ln(P2P1)=-HR(1T2-1T1) in exponential form using the definition of a logarithm. If x and b are positive real numbers and b1, then logb(x)=y is equivalent to by=x.
e-HR(1T2-1T1)=P2P1
Step 3
Solve for P1.
Tap for more steps...
Step 3.1
Rewrite the equation as P2P1=e-HR(1T2-1T1).
P2P1=e-HR(1T2-1T1)
Step 3.2
Simplify e-HR(1T2-1T1).
Tap for more steps...
Step 3.2.1
Apply the distributive property.
P2P1=e-HR1T2-HR(-1T1)
Step 3.2.2
Multiply 1T2 by HR.
P2P1=e-HT2R-HR(-1T1)
Step 3.2.3
Multiply -HR(-1T1).
Tap for more steps...
Step 3.2.3.1
Multiply -1 by -1.
P2P1=e-HT2R+1HR1T1
Step 3.2.3.2
Multiply HR by 1.
P2P1=e-HT2R+HR1T1
Step 3.2.3.3
Multiply HR by 1T1.
P2P1=e-HT2R+HRT1
P2P1=e-HT2R+HRT1
P2P1=e-HT2R+HRT1
Step 3.3
Factor each term.
Tap for more steps...
Step 3.3.1
To write -HT2R as a fraction with a common denominator, multiply by T1T1.
P2P1=e-HT2RT1T1+HRT1
Step 3.3.2
To write HRT1 as a fraction with a common denominator, multiply by T2T2.
P2P1=e-HT2RT1T1+HRT1T2T2
Step 3.3.3
Write each expression with a common denominator of T2RT1, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 3.3.3.1
Multiply HT2R by T1T1.
P2P1=e-HT1T2RT1+HRT1T2T2
Step 3.3.3.2
Multiply HRT1 by T2T2.
P2P1=e-HT1T2RT1+HT2RT1T2
Step 3.3.3.3
Reorder the factors of T2RT1.
P2P1=e-HT1T2T1R+HT2RT1T2
Step 3.3.3.4
Reorder the factors of RT1T2.
P2P1=e-HT1T2T1R+HT2T2T1R
P2P1=e-HT1T2T1R+HT2T2T1R
Step 3.3.4
Combine the numerators over the common denominator.
P2P1=e-HT1+HT2T2T1R
Step 3.3.5
Factor H out of -HT1+HT2.
Tap for more steps...
Step 3.3.5.1
Factor H out of -HT1.
P2P1=eH(-T1)+HT2T2T1R
Step 3.3.5.2
Factor H out of HT2.
P2P1=eH(-T1)+H(T2)T2(T1)R
Step 3.3.5.3
Factor H out of H(-T1)+H(T2).
P2P1=eH(-T1+T2)T2T1R
P2P1=eH(-T1+T2)T2T1R
P2P1=eH(-T1+T2)T2T1R
Step 3.4
Find the LCD of the terms in the equation.
Tap for more steps...
Step 3.4.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
P1,1
Step 3.4.2
The LCM of one and any expression is the expression.
P1
P1
Step 3.5
Multiply each term in P2P1=eH(-T1+T2)T2T1R by P1 to eliminate the fractions.
Tap for more steps...
Step 3.5.1
Multiply each term in P2P1=eH(-T1+T2)T2T1R by P1.
P2P1P1=eH(-T1+T2)T2T1RP1
Step 3.5.2
Simplify the left side.
Tap for more steps...
Step 3.5.2.1
Cancel the common factor of P1.
Tap for more steps...
Step 3.5.2.1.1
Cancel the common factor.
P2P1P1=eH(-T1+T2)T2T1RP1
Step 3.5.2.1.2
Rewrite the expression.
P2=eH(-T1+T2)T2T1RP1
P2=eH(-T1+T2)T2T1RP1
P2=eH(-T1+T2)T2T1RP1
Step 3.5.3
Simplify the right side.
Tap for more steps...
Step 3.5.3.1
Reorder factors in eH(-T1+T2)T2T1RP1.
P2=P1eH(-T1+T2)T2T1R
P2=P1eH(-T1+T2)T2T1R
P2=P1eH(-T1+T2)T2T1R
Step 3.6
Solve the equation.
Tap for more steps...
Step 3.6.1
Rewrite the equation as P1eH(-T1+T2)T2T1R=P2.
P1eH(-T1+T2)T2T1R=P2
Step 3.6.2
Divide each term in P1eH(-T1+T2)T2T1R=P2 by eH(-T1+T2)T2T1R and simplify.
Tap for more steps...
Step 3.6.2.1
Divide each term in P1eH(-T1+T2)T2T1R=P2 by eH(-T1+T2)T2T1R.
P1eH(-T1+T2)T2T1ReH(-T1+T2)T2T1R=P2eH(-T1+T2)T2T1R
Step 3.6.2.2
Simplify the left side.
Tap for more steps...
Step 3.6.2.2.1
Cancel the common factor of eH(-T1+T2)T2T1R.
Tap for more steps...
Step 3.6.2.2.1.1
Cancel the common factor.
P1eH(-T1+T2)T2T1ReH(-T1+T2)T2T1R=P2eH(-T1+T2)T2T1R
Step 3.6.2.2.1.2
Divide P1 by 1.
P1=P2eH(-T1+T2)T2T1R
P1=P2eH(-T1+T2)T2T1R
P1=P2eH(-T1+T2)T2T1R
P1=P2eH(-T1+T2)T2T1R
P1=P2eH(-T1+T2)T2T1R
P1=P2eH(-T1+T2)T2T1R
 [x2  12  π  xdx ]