Enter a problem...
Algebra Examples
x2+2+1x2x2+2+1x2
Step 1
Rewrite 11 as 1212.
x2+2+12x2x2+2+12x2
Step 2
Rewrite 12x212x2 as (1x)2(1x)2.
x2+2+(1x)2x2+2+(1x)2
Step 3
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
2=2⋅x⋅1x2=2⋅x⋅1x
Step 4
Rewrite the polynomial.
x2+2⋅x⋅1x+(1x)2x2+2⋅x⋅1x+(1x)2
Step 5
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2a2+2ab+b2=(a+b)2, where a=xa=x and b=1xb=1x.
(x+1x)2(x+1x)2