Algebra Examples

Write the Fraction in Simplest Form (cos(-x))/(tan(-x))+sin(-x)
cos(-x)tan(-x)+sin(-x)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite tan(-x) in terms of sines and cosines.
cos(-x)sin(-x)cos(-x)+sin(-x)
Step 1.2
Multiply by the reciprocal of the fraction to divide by sin(-x)cos(-x).
cos(-x)cos(-x)sin(-x)+sin(-x)
Step 1.3
Write cos(-x) as a fraction with denominator 1.
cos(-x)1cos(-x)sin(-x)+sin(-x)
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Divide cos(-x) by 1.
cos(-x)cos(-x)sin(-x)+sin(-x)
Step 1.4.2
Combine cos(-x) and cos(-x)sin(-x).
cos(-x)cos(-x)sin(-x)+sin(-x)
cos(-x)cos(-x)sin(-x)+sin(-x)
Step 1.5
Simplify the numerator.
Tap for more steps...
Step 1.5.1
Raise cos(-x) to the power of 1.
cos1(-x)cos(-x)sin(-x)+sin(-x)
Step 1.5.2
Raise cos(-x) to the power of 1.
cos1(-x)cos1(-x)sin(-x)+sin(-x)
Step 1.5.3
Use the power rule aman=am+n to combine exponents.
cos(-x)1+1sin(-x)+sin(-x)
Step 1.5.4
Add 1 and 1.
cos2(-x)sin(-x)+sin(-x)
cos2(-x)sin(-x)+sin(-x)
Step 1.6
Since sin(-x) is an odd function, rewrite sin(-x) as -sin(x).
cos2(-x)-sin(x)+sin(-x)
Step 1.7
Since cos(-x) is an even function, rewrite cos(-x) as cos(x).
cos2(x)-sin(x)+sin(-x)
Step 1.8
Move the negative in front of the fraction.
-cos2(x)sin(x)+sin(-x)
Step 1.9
Since sin(-x) is an odd function, rewrite sin(-x) as -sin(x).
-cos2(x)sin(x)-sin(x)
-cos2(x)sin(x)-sin(x)
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Factor cos(x) out of cos2(x).
-cos(x)cos(x)sin(x)-sin(x)
Step 2.2
Separate fractions.
-(cos(x)1cos(x)sin(x))-sin(x)
Step 2.3
Convert from cos(x)sin(x) to cot(x).
-(cos(x)1cot(x))-sin(x)
Step 2.4
Divide cos(x) by 1.
-cos(x)cot(x)-sin(x)
-cos(x)cot(x)-sin(x)
 [x2  12  π  xdx ]