Enter a problem...
Algebra Examples
Step 1
Eliminate the equal sides of each equation and combine.
Step 2
Step 2.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 2.2
Move all terms containing to the left side of the equation.
Step 2.2.1
Subtract from both sides of the equation.
Step 2.2.2
Subtract from .
Step 2.3
Subtract from both sides of the equation.
Step 2.4
Use the quadratic formula to find the solutions.
Step 2.5
Substitute the values , , and into the quadratic formula and solve for .
Step 2.6
Simplify.
Step 2.6.1
Simplify the numerator.
Step 2.6.1.1
Raise to the power of .
Step 2.6.1.2
Multiply .
Step 2.6.1.2.1
Multiply by .
Step 2.6.1.2.2
Multiply by .
Step 2.6.1.3
Add and .
Step 2.6.1.4
Rewrite as .
Step 2.6.1.4.1
Factor out of .
Step 2.6.1.4.2
Rewrite as .
Step 2.6.1.5
Pull terms out from under the radical.
Step 2.6.2
Multiply by .
Step 2.6.3
Simplify .
Step 2.7
Simplify the expression to solve for the portion of the .
Step 2.7.1
Simplify the numerator.
Step 2.7.1.1
Raise to the power of .
Step 2.7.1.2
Multiply .
Step 2.7.1.2.1
Multiply by .
Step 2.7.1.2.2
Multiply by .
Step 2.7.1.3
Add and .
Step 2.7.1.4
Rewrite as .
Step 2.7.1.4.1
Factor out of .
Step 2.7.1.4.2
Rewrite as .
Step 2.7.1.5
Pull terms out from under the radical.
Step 2.7.2
Multiply by .
Step 2.7.3
Simplify .
Step 2.7.4
Change the to .
Step 2.8
Simplify the expression to solve for the portion of the .
Step 2.8.1
Simplify the numerator.
Step 2.8.1.1
Raise to the power of .
Step 2.8.1.2
Multiply .
Step 2.8.1.2.1
Multiply by .
Step 2.8.1.2.2
Multiply by .
Step 2.8.1.3
Add and .
Step 2.8.1.4
Rewrite as .
Step 2.8.1.4.1
Factor out of .
Step 2.8.1.4.2
Rewrite as .
Step 2.8.1.5
Pull terms out from under the radical.
Step 2.8.2
Multiply by .
Step 2.8.3
Simplify .
Step 2.8.4
Change the to .
Step 2.9
The final answer is the combination of both solutions.
Step 3
Step 3.1
Substitute for .
Step 3.2
Substitute for in and solve for .
Step 3.2.1
Remove parentheses.
Step 3.2.2
Simplify .
Step 3.2.2.1
Simplify each term.
Step 3.2.2.1.1
Apply the product rule to .
Step 3.2.2.1.2
Raise to the power of .
Step 3.2.2.1.3
Cancel the common factor of .
Step 3.2.2.1.3.1
Factor out of .
Step 3.2.2.1.3.2
Cancel the common factor.
Step 3.2.2.1.3.3
Rewrite the expression.
Step 3.2.2.1.4
Rewrite as .
Step 3.2.2.1.5
Expand using the FOIL Method.
Step 3.2.2.1.5.1
Apply the distributive property.
Step 3.2.2.1.5.2
Apply the distributive property.
Step 3.2.2.1.5.3
Apply the distributive property.
Step 3.2.2.1.6
Simplify and combine like terms.
Step 3.2.2.1.6.1
Simplify each term.
Step 3.2.2.1.6.1.1
Multiply by .
Step 3.2.2.1.6.1.2
Multiply by .
Step 3.2.2.1.6.1.3
Multiply by .
Step 3.2.2.1.6.1.4
Combine using the product rule for radicals.
Step 3.2.2.1.6.1.5
Multiply by .
Step 3.2.2.1.6.1.6
Rewrite as .
Step 3.2.2.1.6.1.7
Pull terms out from under the radical, assuming positive real numbers.
Step 3.2.2.1.6.2
Add and .
Step 3.2.2.1.6.3
Add and .
Step 3.2.2.1.7
Cancel the common factor of and .
Step 3.2.2.1.7.1
Factor out of .
Step 3.2.2.1.7.2
Factor out of .
Step 3.2.2.1.7.3
Factor out of .
Step 3.2.2.1.7.4
Cancel the common factors.
Step 3.2.2.1.7.4.1
Factor out of .
Step 3.2.2.1.7.4.2
Cancel the common factor.
Step 3.2.2.1.7.4.3
Rewrite the expression.
Step 3.2.2.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.2.2.3.1
Multiply by .
Step 3.2.2.3.2
Multiply by .
Step 3.2.2.4
Combine the numerators over the common denominator.
Step 3.2.2.5
Simplify the numerator.
Step 3.2.2.5.1
Apply the distributive property.
Step 3.2.2.5.2
Multiply by .
Step 3.2.2.5.3
Move to the left of .
Step 3.2.2.5.4
Add and .
Step 3.2.2.5.5
Add and .
Step 4
Step 4.1
Substitute for .
Step 4.2
Substitute for in and solve for .
Step 4.2.1
Remove parentheses.
Step 4.2.2
Simplify .
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
Apply the product rule to .
Step 4.2.2.1.2
Raise to the power of .
Step 4.2.2.1.3
Cancel the common factor of .
Step 4.2.2.1.3.1
Factor out of .
Step 4.2.2.1.3.2
Cancel the common factor.
Step 4.2.2.1.3.3
Rewrite the expression.
Step 4.2.2.1.4
Rewrite as .
Step 4.2.2.1.5
Expand using the FOIL Method.
Step 4.2.2.1.5.1
Apply the distributive property.
Step 4.2.2.1.5.2
Apply the distributive property.
Step 4.2.2.1.5.3
Apply the distributive property.
Step 4.2.2.1.6
Simplify and combine like terms.
Step 4.2.2.1.6.1
Simplify each term.
Step 4.2.2.1.6.1.1
Multiply by .
Step 4.2.2.1.6.1.2
Multiply by .
Step 4.2.2.1.6.1.3
Multiply by .
Step 4.2.2.1.6.1.4
Multiply .
Step 4.2.2.1.6.1.4.1
Multiply by .
Step 4.2.2.1.6.1.4.2
Multiply by .
Step 4.2.2.1.6.1.4.3
Raise to the power of .
Step 4.2.2.1.6.1.4.4
Raise to the power of .
Step 4.2.2.1.6.1.4.5
Use the power rule to combine exponents.
Step 4.2.2.1.6.1.4.6
Add and .
Step 4.2.2.1.6.1.5
Rewrite as .
Step 4.2.2.1.6.1.5.1
Use to rewrite as .
Step 4.2.2.1.6.1.5.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.6.1.5.3
Combine and .
Step 4.2.2.1.6.1.5.4
Cancel the common factor of .
Step 4.2.2.1.6.1.5.4.1
Cancel the common factor.
Step 4.2.2.1.6.1.5.4.2
Rewrite the expression.
Step 4.2.2.1.6.1.5.5
Evaluate the exponent.
Step 4.2.2.1.6.2
Add and .
Step 4.2.2.1.6.3
Subtract from .
Step 4.2.2.1.7
Cancel the common factor of and .
Step 4.2.2.1.7.1
Factor out of .
Step 4.2.2.1.7.2
Factor out of .
Step 4.2.2.1.7.3
Factor out of .
Step 4.2.2.1.7.4
Cancel the common factors.
Step 4.2.2.1.7.4.1
Factor out of .
Step 4.2.2.1.7.4.2
Cancel the common factor.
Step 4.2.2.1.7.4.3
Rewrite the expression.
Step 4.2.2.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 4.2.2.3.1
Multiply by .
Step 4.2.2.3.2
Multiply by .
Step 4.2.2.4
Combine the numerators over the common denominator.
Step 4.2.2.5
Simplify the numerator.
Step 4.2.2.5.1
Apply the distributive property.
Step 4.2.2.5.2
Multiply by .
Step 4.2.2.5.3
Multiply by .
Step 4.2.2.5.4
Add and .
Step 4.2.2.5.5
Subtract from .
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 6
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 7