Enter a problem...
Algebra Examples
Step 1
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 2
Step 2.1
Use to rewrite as .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Multiply the exponents in .
Step 2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.1.2
Cancel the common factor of .
Step 2.2.1.1.2.1
Cancel the common factor.
Step 2.2.1.1.2.2
Rewrite the expression.
Step 2.2.1.2
Simplify.
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify .
Step 2.3.1.1
Apply the product rule to .
Step 2.3.1.2
Raise to the power of .
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Factor out of .
Step 3.2.1
Factor out of .
Step 3.2.2
Factor out of .
Step 3.2.3
Factor out of .
Step 3.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.4
Set equal to and solve for .
Step 3.4.1
Set equal to .
Step 3.4.2
Solve for .
Step 3.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4.2.2
Simplify .
Step 3.4.2.2.1
Rewrite as .
Step 3.4.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.4.2.2.3
Plus or minus is .
Step 3.5
Set equal to and solve for .
Step 3.5.1
Set equal to .
Step 3.5.2
Solve for .
Step 3.5.2.1
Subtract from both sides of the equation.
Step 3.5.2.2
Divide each term in by and simplify.
Step 3.5.2.2.1
Divide each term in by .
Step 3.5.2.2.2
Simplify the left side.
Step 3.5.2.2.2.1
Cancel the common factor of .
Step 3.5.2.2.2.1.1
Cancel the common factor.
Step 3.5.2.2.2.1.2
Divide by .
Step 3.5.2.2.3
Simplify the right side.
Step 3.5.2.2.3.1
Dividing two negative values results in a positive value.
Step 3.6
The final solution is all the values that make true.
Step 4
The result can be shown in multiple forms.
Exact Form:
Decimal Form: