Enter a problem...
Algebra Examples
Step 1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 2
Step 2.1
Use to rewrite as .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Apply the product rule to .
Step 2.2.1.2
Combine and .
Step 2.2.1.3
Use the power rule to distribute the exponent.
Step 2.2.1.3.1
Apply the product rule to .
Step 2.2.1.3.2
Apply the product rule to .
Step 2.2.1.4
Simplify the numerator.
Step 2.2.1.4.1
Raise to the power of .
Step 2.2.1.4.2
Multiply the exponents in .
Step 2.2.1.4.2.1
Apply the power rule and multiply exponents, .
Step 2.2.1.4.2.2
Cancel the common factor of .
Step 2.2.1.4.2.2.1
Cancel the common factor.
Step 2.2.1.4.2.2.2
Rewrite the expression.
Step 2.2.1.4.3
Simplify.
Step 2.2.1.5
Simplify the denominator.
Step 2.2.1.5.1
Multiply the exponents in .
Step 2.2.1.5.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.5.1.2
Cancel the common factor of .
Step 2.2.1.5.1.2.1
Cancel the common factor.
Step 2.2.1.5.1.2.2
Rewrite the expression.
Step 2.2.1.5.2
Evaluate the exponent.
Step 2.2.1.6
Cancel the common factor of and .
Step 2.2.1.6.1
Factor out of .
Step 2.2.1.6.2
Cancel the common factors.
Step 2.2.1.6.2.1
Factor out of .
Step 2.2.1.6.2.2
Cancel the common factor.
Step 2.2.1.6.2.3
Rewrite the expression.
Step 2.2.1.6.2.4
Divide by .
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify .
Step 2.3.1.1
Simplify the expression.
Step 2.3.1.1.1
Apply the product rule to .
Step 2.3.1.1.2
Raise to the power of .
Step 2.3.1.2
Rewrite as .
Step 2.3.1.2.1
Use to rewrite as .
Step 2.3.1.2.2
Apply the power rule and multiply exponents, .
Step 2.3.1.2.3
Combine and .
Step 2.3.1.2.4
Cancel the common factor of .
Step 2.3.1.2.4.1
Cancel the common factor.
Step 2.3.1.2.4.2
Rewrite the expression.
Step 2.3.1.2.5
Simplify.
Step 2.3.1.3
Multiply by .
Step 3
Step 3.1
Move all terms containing to the left side of the equation.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Since , the equation will always be true for any value of .
All real numbers
All real numbers
Step 4
The result can be shown in multiple forms.
All real numbers
Interval Notation: