Algebra Examples

Divide Using Long Polynomial Division (8x^5+6x^4-x^3+1)÷(2x^3-x^2-3)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
-+-+-+++
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
-+-+-+++
Step 3
Multiply the new quotient term by the divisor.
-+-+-+++
+-+-
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
-+-+-+++
-+-+
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+-+-+++
-+-+
+-+
Step 6
Pull the next terms from the original dividend down into the current dividend.
-+-+-+++
-+-+
+-++
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
+
-+-+-+++
-+-+
+-++
Step 8
Multiply the new quotient term by the divisor.
+
-+-+-+++
-+-+
+-++
+-+-
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
+
-+-+-+++
-+-+
+-++
-+-+
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
-+-+-+++
-+-+
+-++
-+-+
+++
Step 11
Pull the next terms from the original dividend down into the current dividend.
+
-+-+-+++
-+-+
+-++
-+-+
++++
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
++
-+-+-+++
-+-+
+-++
-+-+
++++
Step 13
Multiply the new quotient term by the divisor.
++
-+-+-+++
-+-+
+-++
-+-+
++++
+-+-
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
++
-+-+-+++
-+-+
+-++
-+-+
++++
-+-+
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++
-+-+-+++
-+-+
+-++
-+-+
++++
-+-+
+++
Step 16
The final answer is the quotient plus the remainder over the divisor.