Enter a problem...
Algebra Examples
Step 1
Step 1.1
Rewrite as .
Step 1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2
Step 2.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.2
Write the factored form using these integers.
Step 3
Step 3.1
Rewrite as .
Step 3.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 3.3
Rewrite the polynomial.
Step 3.4
Factor using the perfect square trinomial rule , where and .
Step 4
Step 4.1
Cancel the common factor of .
Step 4.1.1
Factor out of .
Step 4.1.2
Factor out of .
Step 4.1.3
Cancel the common factor.
Step 4.1.4
Rewrite the expression.
Step 4.2
Cancel the common factor of .
Step 4.2.1
Factor out of .
Step 4.2.2
Cancel the common factor.
Step 4.2.3
Rewrite the expression.
Step 4.3
Multiply by .
Step 4.4
Cancel the common factor of .
Step 4.4.1
Cancel the common factor.
Step 4.4.2
Rewrite the expression.