Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Divide each term in by and simplify.
Step 2.2.1
Divide each term in by .
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor.
Step 2.2.2.2
Divide by .
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Multiply by .
Step 2.2.3.2
Factor out of .
Step 2.2.3.3
Separate fractions.
Step 2.2.3.4
Divide by .
Step 2.2.3.5
Divide by .
Step 2.3
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.4
Simplify the exponent.
Step 2.4.1
Simplify the left side.
Step 2.4.1.1
Simplify .
Step 2.4.1.1.1
Multiply the exponents in .
Step 2.4.1.1.1.1
Apply the power rule and multiply exponents, .
Step 2.4.1.1.1.2
Cancel the common factor of .
Step 2.4.1.1.1.2.1
Cancel the common factor.
Step 2.4.1.1.1.2.2
Rewrite the expression.
Step 2.4.1.1.1.3
Cancel the common factor of .
Step 2.4.1.1.1.3.1
Cancel the common factor.
Step 2.4.1.1.1.3.2
Rewrite the expression.
Step 2.4.1.1.2
Simplify.
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Apply the product rule to .
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Apply the product rule to .
Step 4.2.4
Raise to the power of .
Step 4.2.5
Multiply the exponents in .
Step 4.2.5.1
Apply the power rule and multiply exponents, .
Step 4.2.5.2
Cancel the common factor of .
Step 4.2.5.2.1
Cancel the common factor.
Step 4.2.5.2.2
Rewrite the expression.
Step 4.2.5.3
Cancel the common factor of .
Step 4.2.5.3.1
Cancel the common factor.
Step 4.2.5.3.2
Rewrite the expression.
Step 4.2.6
Multiply by .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Apply the product rule to .
Step 4.3.4
Multiply the exponents in .
Step 4.3.4.1
Apply the power rule and multiply exponents, .
Step 4.3.4.2
Cancel the common factor of .
Step 4.3.4.2.1
Cancel the common factor.
Step 4.3.4.2.2
Rewrite the expression.
Step 4.3.4.3
Cancel the common factor of .
Step 4.3.4.3.1
Cancel the common factor.
Step 4.3.4.3.2
Rewrite the expression.
Step 4.3.5
Multiply the exponents in .
Step 4.3.5.1
Apply the power rule and multiply exponents, .
Step 4.3.5.2
Cancel the common factor of .
Step 4.3.5.2.1
Cancel the common factor.
Step 4.3.5.2.2
Rewrite the expression.
Step 4.3.5.3
Cancel the common factor of .
Step 4.3.5.3.1
Cancel the common factor.
Step 4.3.5.3.2
Rewrite the expression.
Step 4.3.6
Multiply .
Step 4.3.6.1
Multiply by .
Step 4.3.6.2
Multiply by .
Step 4.4
Since and , then is the inverse of .