Enter a problem...
Algebra Examples
-f(2(x-2))+1−f(2(x−2))+1
Step 1
Step 1.1
Subtract 11 from both sides of the equation.
-2yx+4y=-1−2yx+4y=−1
Step 1.2
Factor 2y2y out of -2yx+4y−2yx+4y.
Step 1.2.1
Factor 2y2y out of -2yx−2yx.
2y(-1x)+4y=-12y(−1x)+4y=−1
Step 1.2.2
Factor 2y2y out of 4y4y.
2y(-1x)+2y(2)=-12y(−1x)+2y(2)=−1
Step 1.2.3
Factor 2y2y out of 2y(-1x)+2y(2)2y(−1x)+2y(2).
2y(-1x+2)=-12y(−1x+2)=−1
2y(-1x+2)=-12y(−1x+2)=−1
Step 1.3
Rewrite -1x−1x as -x−x.
2y(-x+2)=-12y(−x+2)=−1
Step 1.4
Divide each term in 2y(-x+2)=-12y(−x+2)=−1 by 2(-x+2)2(−x+2) and simplify.
Step 1.4.1
Divide each term in 2y(-x+2)=-12y(−x+2)=−1 by 2(-x+2)2(−x+2).
2y(-x+2)2(-x+2)=-12(-x+2)2y(−x+2)2(−x+2)=−12(−x+2)
Step 1.4.2
Simplify the left side.
Step 1.4.2.1
Cancel the common factor of 22.
Step 1.4.2.1.1
Cancel the common factor.
2y(-x+2)2(-x+2)=-12(-x+2)
Step 1.4.2.1.2
Rewrite the expression.
y(-x+2)-x+2=-12(-x+2)
y(-x+2)-x+2=-12(-x+2)
Step 1.4.2.2
Cancel the common factor of -x+2.
Step 1.4.2.2.1
Cancel the common factor.
y(-x+2)-x+2=-12(-x+2)
Step 1.4.2.2.2
Divide y by 1.
y=-12(-x+2)
y=-12(-x+2)
y=-12(-x+2)
Step 1.4.3
Simplify the right side.
Step 1.4.3.1
Move the negative in front of the fraction.
y=-12(-x+2)
Step 1.4.3.2
Factor -1 out of -x.
y=-12(-(x)+2)
Step 1.4.3.3
Rewrite 2 as -1(-2).
y=-12(-(x)-1(-2))
Step 1.4.3.4
Factor -1 out of -(x)-1(-2).
y=-12(-(x-2))
Step 1.4.3.5
Simplify the expression.
Step 1.4.3.5.1
Rewrite -(x-2) as -1(x-2).
y=-12(-1(x-2))
Step 1.4.3.5.2
Move the negative in front of the fraction.
y=--12(x-2)
Step 1.4.3.5.3
Multiply -1 by -1.
y=112(x-2)
Step 1.4.3.5.4
Multiply 12(x-2) by 1.
y=12(x-2)
y=12(x-2)
y=12(x-2)
y=12(x-2)
y=12(x-2)
Step 2
Find where the expression 12(x-2) is undefined.
x=2
Step 3
Consider the rational function R(x)=axnbxm where n is the degree of the numerator and m is the degree of the denominator.
1. If n<m, then the x-axis, y=0, is the horizontal asymptote.
2. If n=m, then the horizontal asymptote is the line y=ab.
3. If n>m, then there is no horizontal asymptote (there is an oblique asymptote).
Step 4
Find n and m.
n=0
m=1
Step 5
Since n<m, the x-axis, y=0, is the horizontal asymptote.
y=0
Step 6
There is no oblique asymptote because the degree of the numerator is less than or equal to the degree of the denominator.
No Oblique Asymptotes
Step 7
This is the set of all asymptotes.
Vertical Asymptotes: x=2
Horizontal Asymptotes: y=0
No Oblique Asymptotes
Step 8