Enter a problem...
Algebra Examples
x2+3x-10x2-4⋅x+2x2-9x2+3x−10x2−4⋅x+2x2−9
Step 1
Step 1.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is -10−10 and whose sum is 33.
-2,5−2,5
Step 1.2
Write the factored form using these integers.
(x-2)(x+5)x2-4⋅x+2x2-9(x−2)(x+5)x2−4⋅x+2x2−9
(x-2)(x+5)x2-4⋅x+2x2-9(x−2)(x+5)x2−4⋅x+2x2−9
Step 2
Step 2.1
Rewrite 44 as 2222.
(x-2)(x+5)x2-22⋅x+2x2-9(x−2)(x+5)x2−22⋅x+2x2−9
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=xa=x and b=2b=2.
(x-2)(x+5)(x+2)(x-2)⋅x+2x2-9(x−2)(x+5)(x+2)(x−2)⋅x+2x2−9
(x-2)(x+5)(x+2)(x-2)⋅x+2x2-9(x−2)(x+5)(x+2)(x−2)⋅x+2x2−9
Step 3
Step 3.1
Rewrite 99 as 3232.
(x-2)(x+5)(x+2)(x-2)⋅x+2x2-32(x−2)(x+5)(x+2)(x−2)⋅x+2x2−32
Step 3.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=xa=x and b=3b=3.
(x-2)(x+5)(x+2)(x-2)⋅x+2(x+3)(x-3)(x−2)(x+5)(x+2)(x−2)⋅x+2(x+3)(x−3)
(x-2)(x+5)(x+2)(x-2)⋅x+2(x+3)(x-3)(x−2)(x+5)(x+2)(x−2)⋅x+2(x+3)(x−3)
Step 4
Step 4.1
Cancel the common factor of x+2x+2.
Step 4.1.1
Cancel the common factor.
(x-2)(x+5)(x+2)(x-2)⋅x+2(x+3)(x-3)
Step 4.1.2
Rewrite the expression.
(x-2)(x+5)x-2⋅1(x+3)(x-3)
(x-2)(x+5)x-2⋅1(x+3)(x-3)
Step 4.2
Multiply (x-2)(x+5)x-2 by 1(x+3)(x-3).
(x-2)(x+5)(x-2)((x+3)(x-3))
Step 4.3
Cancel the common factor of x-2.
Step 4.3.1
Cancel the common factor.
(x-2)(x+5)(x-2)((x+3)(x-3))
Step 4.3.2
Rewrite the expression.
x+5(x+3)(x-3)
x+5(x+3)(x-3)
x+5(x+3)(x-3)