Enter a problem...
Algebra Examples
Step 1
Step 1.1
Factor out of .
Step 1.2
Factor out of .
Step 1.3
Factor out of .
Step 1.4
Factor out of .
Step 1.5
Factor out of .
Step 1.6
Factor out of .
Step 1.7
Factor out of .
Step 2
Step 2.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 2.2
Find every combination of . These are the possible roots of the polynomial function.
Step 2.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 2.3.1
Substitute into the polynomial.
Step 2.3.2
Raise to the power of .
Step 2.3.3
Multiply by .
Step 2.3.4
Raise to the power of .
Step 2.3.5
Multiply by .
Step 2.3.6
Add and .
Step 2.3.7
Raise to the power of .
Step 2.3.8
Multiply by .
Step 2.3.9
Subtract from .
Step 2.3.10
Add and .
Step 2.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 2.5
Divide by .
Step 2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | - | + | + | + | - | + | + |
Step 2.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||||||||
+ | - | + | + | + | - | + | + |
Step 2.5.3
Multiply the new quotient term by the divisor.
- | |||||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
- | - |
Step 2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + |
Step 2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ |
Step 2.5.6
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + |
Step 2.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + |
Step 2.5.8
Multiply the new quotient term by the divisor.
- | + | ||||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
+ | + |
Step 2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - |
Step 2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ |
Step 2.5.11
Pull the next terms from the original dividend down into the current dividend.
- | + | ||||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + |
Step 2.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | + | |||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + |
Step 2.5.13
Multiply the new quotient term by the divisor.
- | + | + | |||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
+ | + |
Step 2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | + | |||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - |
Step 2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | + | |||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- |
Step 2.5.16
Pull the next terms from the original dividend down into the current dividend.
- | + | + | |||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - |
Step 2.5.17
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | + | - | ||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - |
Step 2.5.18
Multiply the new quotient term by the divisor.
- | + | + | - | ||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
- | - |
Step 2.5.19
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | + | - | ||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + |
Step 2.5.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | + | - | ||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- |
Step 2.5.21
Pull the next terms from the original dividend down into the current dividend.
- | + | + | - | ||||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | + |
Step 2.5.22
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | + | - | - | |||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | + |
Step 2.5.23
Multiply the new quotient term by the divisor.
- | + | + | - | - | |||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
- | - |
Step 2.5.24
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | + | - | - | |||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + |
Step 2.5.25
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | + | - | - | |||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
+ |
Step 2.5.26
Pull the next terms from the original dividend down into the current dividend.
- | + | + | - | - | |||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
+ | + |
Step 2.5.27
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | + | - | - | + | ||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
+ | + |
Step 2.5.28
Multiply the new quotient term by the divisor.
- | + | + | - | - | + | ||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
+ | + |
Step 2.5.29
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | + | - | - | + | ||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - |
Step 2.5.30
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | + | - | - | + | ||||||||||||
+ | - | + | + | + | - | + | + | ||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
- | - | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | - | ||||||||||||||||
Step 2.5.31
Since the remander is , the final answer is the quotient.
Step 2.6
Write as a set of factors.
Step 3
Regroup terms.
Step 4
Step 4.1
Factor out of .
Step 4.2
Factor out of .
Step 4.3
Factor out of .
Step 4.4
Factor out of .
Step 4.5
Factor out of .
Step 5
Rewrite as .
Step 6
Let . Substitute for all occurrences of .
Step 7
Step 7.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 7.2
Write the factored form using these integers.
Step 8
Replace all occurrences of with .
Step 9
Rewrite as .
Step 10
Step 10.1
Factor.
Step 10.1.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 10.1.2
Remove unnecessary parentheses.
Step 10.2
Remove unnecessary parentheses.
Step 11
Rewrite as .
Step 12
Let . Substitute for all occurrences of .
Step 13
Step 13.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 13.2
Write the factored form using these integers.
Step 14
Replace all occurrences of with .
Step 15
Rewrite as .
Step 16
Step 16.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 16.2
Remove unnecessary parentheses.
Step 17
Step 17.1
Factor out of .
Step 17.2
Factor out of .
Step 17.3
Factor out of .
Step 18
Step 18.1
Factor out of .
Step 18.2
Rewrite as .
Step 18.3
Factor out of .
Step 18.4
Remove parentheses.
Step 18.5
Raise to the power of .
Step 18.6
Raise to the power of .
Step 18.7
Use the power rule to combine exponents.
Step 18.8
Add and .
Step 19
Step 19.1
Factor.
Step 19.1.1
Factor.
Step 19.1.1.1
Factor out negative.
Step 19.1.1.2
Remove unnecessary parentheses.
Step 19.1.2
Remove unnecessary parentheses.
Step 19.2
Remove unnecessary parentheses.
Step 20
Step 20.1
Raise to the power of .
Step 20.2
Raise to the power of .
Step 20.3
Use the power rule to combine exponents.
Step 20.4
Add and .
Step 21
Step 21.1
Factor out of .
Step 21.2
Rewrite as .
Step 21.3
Factor out of .
Step 22
Step 22.1
Apply the product rule to .
Step 22.2
Remove unnecessary parentheses.
Step 23
Step 23.1
Move .
Step 23.2
Multiply by .
Step 23.2.1
Raise to the power of .
Step 23.2.2
Use the power rule to combine exponents.
Step 23.3
Add and .