Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Add to both sides of the equation.
Step 3.3
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.4
Simplify the exponent.
Step 3.4.1
Simplify the left side.
Step 3.4.1.1
Simplify .
Step 3.4.1.1.1
Multiply the exponents in .
Step 3.4.1.1.1.1
Apply the power rule and multiply exponents, .
Step 3.4.1.1.1.2
Cancel the common factor of .
Step 3.4.1.1.1.2.1
Cancel the common factor.
Step 3.4.1.1.1.2.2
Rewrite the expression.
Step 3.4.1.1.2
Simplify.
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Use the Binomial Theorem.
Step 3.4.2.1.2
Simplify each term.
Step 3.4.2.1.2.1
Multiply by .
Step 3.4.2.1.2.2
One to any power is one.
Step 3.4.2.1.2.3
Multiply by .
Step 3.4.2.1.2.4
One to any power is one.
Step 3.4.2.1.2.5
Multiply by .
Step 3.4.2.1.2.6
One to any power is one.
Step 3.4.2.1.2.7
Multiply by .
Step 3.4.2.1.2.8
One to any power is one.
Step 3.4.2.1.2.9
Multiply by .
Step 3.4.2.1.2.10
One to any power is one.
Step 3.4.2.1.2.11
Multiply by .
Step 3.4.2.1.2.12
One to any power is one.
Step 3.5
Solve for .
Step 3.5.1
Multiply both sides of the equation by .
Step 3.5.2
Simplify both sides of the equation.
Step 3.5.2.1
Simplify the left side.
Step 3.5.2.1.1
Cancel the common factor of .
Step 3.5.2.1.1.1
Cancel the common factor.
Step 3.5.2.1.1.2
Rewrite the expression.
Step 3.5.2.2
Simplify the right side.
Step 3.5.2.2.1
Simplify .
Step 3.5.2.2.1.1
Apply the distributive property.
Step 3.5.2.2.1.2
Simplify.
Step 3.5.2.2.1.2.1
Multiply by .
Step 3.5.2.2.1.2.2
Multiply by .
Step 3.5.2.2.1.2.3
Multiply by .
Step 3.5.2.2.1.2.4
Multiply by .
Step 3.5.2.2.1.2.5
Multiply by .
Step 3.5.2.2.1.2.6
Multiply by .
Step 3.5.2.2.1.2.7
Multiply by .
Step 3.5.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.5.4
Simplify .
Step 3.5.4.1
Factor out of .
Step 3.5.4.1.1
Factor out of .
Step 3.5.4.1.2
Factor out of .
Step 3.5.4.1.3
Factor out of .
Step 3.5.4.1.4
Factor out of .
Step 3.5.4.1.5
Factor out of .
Step 3.5.4.1.6
Factor out of .
Step 3.5.4.1.7
Factor out of .
Step 3.5.4.1.8
Factor out of .
Step 3.5.4.1.9
Factor out of .
Step 3.5.4.1.10
Factor out of .
Step 3.5.4.1.11
Factor out of .
Step 3.5.4.1.12
Factor out of .
Step 3.5.4.1.13
Factor out of .
Step 3.5.4.1.14
Factor out of .
Step 3.5.4.1.15
Factor out of .
Step 3.5.4.2
Factor using the binomial theorem.
Step 3.5.4.3
Rewrite as .
Step 3.5.4.3.1
Factor out .
Step 3.5.4.3.2
Reorder and .
Step 3.5.4.3.3
Rewrite as .
Step 3.5.4.3.4
Add parentheses.
Step 3.5.4.4
Pull terms out from under the radical.
Step 3.5.4.5
One to any power is one.
Step 3.5.5
Simplify .
Step 3.5.5.1
Apply the distributive property.
Step 3.5.5.2
Multiply by .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Combine the opposite terms in .
Step 5.2.3.1
Add and .
Step 5.2.3.2
Add and .
Step 5.2.3.3
Add and .
Step 5.2.3.4
Add and .
Step 5.2.4
Simplify each term.
Step 5.2.4.1
Simplify each term.
Step 5.2.4.1.1
Apply the product rule to .
Step 5.2.4.1.2
Multiply the exponents in .
Step 5.2.4.1.2.1
Apply the power rule and multiply exponents, .
Step 5.2.4.1.2.2
Combine and .
Step 5.2.4.2
Multiply the exponents in .
Step 5.2.4.2.1
Apply the power rule and multiply exponents, .
Step 5.2.4.2.2
Combine and .
Step 5.2.4.3
Apply the product rule to .
Step 5.2.4.4
Multiply the exponents in .
Step 5.2.4.4.1
Apply the power rule and multiply exponents, .
Step 5.2.4.4.2
Multiply .
Step 5.2.4.4.2.1
Combine and .
Step 5.2.4.4.2.2
Multiply by .
Step 5.2.4.5
Combine and .
Step 5.2.4.6
Reduce the expression by cancelling the common factors.
Step 5.2.4.6.1
Move to the numerator using the negative exponent rule .
Step 5.2.4.6.2
Multiply by by adding the exponents.
Step 5.2.4.6.2.1
Move .
Step 5.2.4.6.2.2
Multiply by .
Step 5.2.4.6.2.2.1
Raise to the power of .
Step 5.2.4.6.2.2.2
Use the power rule to combine exponents.
Step 5.2.4.6.2.3
Write as a fraction with a common denominator.
Step 5.2.4.6.2.4
Combine the numerators over the common denominator.
Step 5.2.4.6.2.5
Add and .
Step 5.2.4.7
Rewrite as .
Step 5.2.4.8
Pull terms out from under the radical, assuming real numbers.
Step 5.2.4.9
Apply the distributive property.
Step 5.2.4.10
Rewrite using the commutative property of multiplication.
Step 5.2.4.11
Rewrite as .
Step 5.2.4.12
Simplify each term.
Step 5.2.4.12.1
Cancel the common factor of .
Step 5.2.4.12.1.1
Cancel the common factor.
Step 5.2.4.12.1.2
Rewrite the expression.
Step 5.2.4.12.2
Multiply by by adding the exponents.
Step 5.2.4.12.2.1
Use the power rule to combine exponents.
Step 5.2.4.12.2.2
Combine the numerators over the common denominator.
Step 5.2.4.12.2.3
Add and .
Step 5.2.4.12.2.4
Divide by .
Step 5.2.4.12.3
Simplify .
Step 5.2.4.13
Multiply the exponents in .
Step 5.2.4.13.1
Apply the power rule and multiply exponents, .
Step 5.2.4.13.2
Combine and .
Step 5.2.4.14
Apply the product rule to .
Step 5.2.4.15
Multiply the exponents in .
Step 5.2.4.15.1
Apply the power rule and multiply exponents, .
Step 5.2.4.15.2
Multiply .
Step 5.2.4.15.2.1
Combine and .
Step 5.2.4.15.2.2
Multiply by .
Step 5.2.4.16
Combine and .
Step 5.2.4.17
Reduce the expression by cancelling the common factors.
Step 5.2.4.17.1
Move to the numerator using the negative exponent rule .
Step 5.2.4.17.2
Multiply by by adding the exponents.
Step 5.2.4.17.2.1
Move .
Step 5.2.4.17.2.2
Multiply by .
Step 5.2.4.17.2.2.1
Raise to the power of .
Step 5.2.4.17.2.2.2
Use the power rule to combine exponents.
Step 5.2.4.17.2.3
Write as a fraction with a common denominator.
Step 5.2.4.17.2.4
Combine the numerators over the common denominator.
Step 5.2.4.17.2.5
Add and .
Step 5.2.4.18
Rewrite as .
Step 5.2.4.19
Pull terms out from under the radical, assuming real numbers.
Step 5.2.5
Combine the opposite terms in .
Step 5.2.5.1
Add and .
Step 5.2.5.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Simplify the numerator.
Step 5.3.3.1.1
Factor out of .
Step 5.3.3.1.1.1
Factor out of .
Step 5.3.3.1.1.2
Multiply by .
Step 5.3.3.1.1.3
Factor out of .
Step 5.3.3.1.2
Apply the product rule to .
Step 5.3.3.1.3
Rewrite as .
Step 5.3.3.1.3.1
Use to rewrite as .
Step 5.3.3.1.3.2
Apply the power rule and multiply exponents, .
Step 5.3.3.1.3.3
Combine and .
Step 5.3.3.1.3.4
Cancel the common factor of .
Step 5.3.3.1.3.4.1
Cancel the common factor.
Step 5.3.3.1.3.4.2
Rewrite the expression.
Step 5.3.3.1.3.5
Simplify.
Step 5.3.3.1.4
Rewrite as .
Step 5.3.3.1.5
Expand using the FOIL Method.
Step 5.3.3.1.5.1
Apply the distributive property.
Step 5.3.3.1.5.2
Apply the distributive property.
Step 5.3.3.1.5.3
Apply the distributive property.
Step 5.3.3.1.6
Simplify and combine like terms.
Step 5.3.3.1.6.1
Simplify each term.
Step 5.3.3.1.6.1.1
Multiply by .
Step 5.3.3.1.6.1.2
Multiply by .
Step 5.3.3.1.6.1.3
Multiply by .
Step 5.3.3.1.6.1.4
Multiply by .
Step 5.3.3.1.6.2
Add and .
Step 5.3.3.1.7
Apply the distributive property.
Step 5.3.3.1.8
Simplify.
Step 5.3.3.1.8.1
Multiply by .
Step 5.3.3.1.8.2
Multiply by .
Step 5.3.3.1.9
Factor out of .
Step 5.3.3.1.9.1
Factor out of .
Step 5.3.3.1.9.2
Factor out of .
Step 5.3.3.1.9.3
Factor out of .
Step 5.3.3.1.9.4
Factor out of .
Step 5.3.3.1.9.5
Factor out of .
Step 5.3.3.1.10
Factor using the perfect square rule.
Step 5.3.3.1.10.1
Rewrite as .
Step 5.3.3.1.10.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 5.3.3.1.10.3
Rewrite the polynomial.
Step 5.3.3.1.10.4
Factor using the perfect square trinomial rule , where and .
Step 5.3.3.1.11
Multiply by by adding the exponents.
Step 5.3.3.1.11.1
Move .
Step 5.3.3.1.11.2
Use the power rule to combine exponents.
Step 5.3.3.1.11.3
Add and .
Step 5.3.3.2
Cancel the common factor of .
Step 5.3.3.2.1
Cancel the common factor.
Step 5.3.3.2.2
Divide by .
Step 5.3.3.3
Multiply the exponents in .
Step 5.3.3.3.1
Apply the power rule and multiply exponents, .
Step 5.3.3.3.2
Cancel the common factor of .
Step 5.3.3.3.2.1
Cancel the common factor.
Step 5.3.3.3.2.2
Rewrite the expression.
Step 5.3.3.4
Simplify.
Step 5.3.4
Combine the opposite terms in .
Step 5.3.4.1
Subtract from .
Step 5.3.4.2
Add and .
Step 5.4
Since and , then is the inverse of .