Enter a problem...
Algebra Examples
Step 1
Step 1.1
Add to both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply .
Step 2.2.1.1.3.1.1.1
Multiply by .
Step 2.2.1.1.3.1.1.2
Multiply by .
Step 2.2.1.1.3.1.1.3
Multiply by .
Step 2.2.1.1.3.1.2
Multiply .
Step 2.2.1.1.3.1.2.1
Multiply by .
Step 2.2.1.1.3.1.2.2
Multiply by .
Step 2.2.1.1.3.1.3
Multiply .
Step 2.2.1.1.3.1.3.1
Multiply by .
Step 2.2.1.1.3.1.3.2
Multiply by .
Step 2.2.1.1.3.1.4
Move to the left of .
Step 2.2.1.1.3.1.5
Multiply .
Step 2.2.1.1.3.1.5.1
Multiply by .
Step 2.2.1.1.3.1.5.2
Raise to the power of .
Step 2.2.1.1.3.1.5.3
Raise to the power of .
Step 2.2.1.1.3.1.5.4
Use the power rule to combine exponents.
Step 2.2.1.1.3.1.5.5
Add and .
Step 2.2.1.1.3.1.5.6
Multiply by .
Step 2.2.1.1.3.2
Add and .
Step 2.2.1.1.4
Cancel the common factor of .
Step 2.2.1.1.4.1
Factor out of .
Step 2.2.1.1.4.2
Cancel the common factor.
Step 2.2.1.1.4.3
Rewrite the expression.
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Simplify terms.
Step 2.2.1.3.1
Combine and .
Step 2.2.1.3.2
Combine the numerators over the common denominator.
Step 2.2.1.3.3
Combine the numerators over the common denominator.
Step 2.2.1.4
Move to the left of .
Step 2.2.1.5
Simplify terms.
Step 2.2.1.5.1
Add and .
Step 2.2.1.5.2
Factor out of .
Step 2.2.1.5.2.1
Factor out of .
Step 2.2.1.5.2.2
Factor out of .
Step 2.2.1.6
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.7
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.2.1.7.1
Multiply by .
Step 2.2.1.7.2
Multiply by .
Step 2.2.1.8
Combine the numerators over the common denominator.
Step 2.2.1.9
Simplify the numerator.
Step 2.2.1.9.1
Factor out of .
Step 2.2.1.9.1.1
Factor out of .
Step 2.2.1.9.1.2
Factor out of .
Step 2.2.1.9.2
Move to the left of .
Step 2.2.1.9.3
Reorder terms.
Step 3
Step 3.1
Multiply both sides by .
Step 3.2
Simplify.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Cancel the common factor of .
Step 3.2.1.1.1.1
Cancel the common factor.
Step 3.2.1.1.1.2
Rewrite the expression.
Step 3.2.1.1.2
Apply the distributive property.
Step 3.2.1.1.3
Simplify.
Step 3.2.1.1.3.1
Multiply by .
Step 3.2.1.1.3.2
Multiply by .
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Multiply by .
Step 3.3
Solve for .
Step 3.3.1
Subtract from both sides of the equation.
Step 3.3.2
Subtract from .
Step 3.3.3
Factor the left side of the equation.
Step 3.3.3.1
Factor out of .
Step 3.3.3.1.1
Factor out of .
Step 3.3.3.1.2
Factor out of .
Step 3.3.3.1.3
Factor out of .
Step 3.3.3.1.4
Factor out of .
Step 3.3.3.1.5
Factor out of .
Step 3.3.3.2
Factor.
Step 3.3.3.2.1
Factor using the AC method.
Step 3.3.3.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 3.3.3.2.1.2
Write the factored form using these integers.
Step 3.3.3.2.2
Remove unnecessary parentheses.
Step 3.3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.3.5
Set equal to and solve for .
Step 3.3.5.1
Set equal to .
Step 3.3.5.2
Add to both sides of the equation.
Step 3.3.6
Set equal to and solve for .
Step 3.3.6.1
Set equal to .
Step 3.3.6.2
Subtract from both sides of the equation.
Step 3.3.7
The final solution is all the values that make true.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Combine the numerators over the common denominator.
Step 4.2.1.2
Simplify the expression.
Step 4.2.1.2.1
Add and .
Step 4.2.1.2.2
Divide by .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Combine the numerators over the common denominator.
Step 5.2.1.2
Simplify the expression.
Step 5.2.1.2.1
Subtract from .
Step 5.2.1.2.2
Divide by .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8