Algebra Examples

Solve for k square root of 8(x-k)=x-k
Step 1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 2
Simplify each side of the equation.
Tap for more steps...
Step 2.1
Use to rewrite as .
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify .
Tap for more steps...
Step 2.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.2.1.1.2.1
Cancel the common factor.
Step 2.2.1.1.2.2
Rewrite the expression.
Step 2.2.1.2
Apply the distributive property.
Step 2.2.1.3
Multiply.
Tap for more steps...
Step 2.2.1.3.1
Multiply by .
Step 2.2.1.3.2
Simplify.
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Simplify .
Tap for more steps...
Step 2.3.1.1
Rewrite as .
Step 2.3.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 2.3.1.2.1
Apply the distributive property.
Step 2.3.1.2.2
Apply the distributive property.
Step 2.3.1.2.3
Apply the distributive property.
Step 2.3.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.3.1.3.1
Simplify each term.
Tap for more steps...
Step 2.3.1.3.1.1
Multiply by .
Step 2.3.1.3.1.2
Rewrite using the commutative property of multiplication.
Step 2.3.1.3.1.3
Rewrite using the commutative property of multiplication.
Step 2.3.1.3.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 2.3.1.3.1.4.1
Move .
Step 2.3.1.3.1.4.2
Multiply by .
Step 2.3.1.3.1.5
Multiply by .
Step 2.3.1.3.1.6
Multiply by .
Step 2.3.1.3.2
Subtract from .
Tap for more steps...
Step 2.3.1.3.2.1
Move .
Step 2.3.1.3.2.2
Subtract from .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 3.2
Add to both sides of the equation.
Step 3.3
Subtract from both sides of the equation.
Step 3.4
Use the quadratic formula to find the solutions.
Step 3.5
Substitute the values , , and into the quadratic formula and solve for .
Step 3.6
Simplify.
Tap for more steps...
Step 3.6.1
Simplify the numerator.
Tap for more steps...
Step 3.6.1.1
Apply the distributive property.
Step 3.6.1.2
Multiply by .
Step 3.6.1.3
Multiply by .
Step 3.6.1.4
Add parentheses.
Step 3.6.1.5
Let . Substitute for all occurrences of .
Tap for more steps...
Step 3.6.1.5.1
Rewrite as .
Step 3.6.1.5.2
Expand using the FOIL Method.
Tap for more steps...
Step 3.6.1.5.2.1
Apply the distributive property.
Step 3.6.1.5.2.2
Apply the distributive property.
Step 3.6.1.5.2.3
Apply the distributive property.
Step 3.6.1.5.3
Simplify and combine like terms.
Tap for more steps...
Step 3.6.1.5.3.1
Simplify each term.
Tap for more steps...
Step 3.6.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.6.1.5.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.6.1.5.3.1.2.1
Move .
Step 3.6.1.5.3.1.2.2
Multiply by .
Step 3.6.1.5.3.1.3
Multiply by .
Step 3.6.1.5.3.1.4
Multiply by .
Step 3.6.1.5.3.1.5
Multiply by .
Step 3.6.1.5.3.1.6
Multiply by .
Step 3.6.1.5.3.2
Subtract from .
Step 3.6.1.6
Factor out of .
Tap for more steps...
Step 3.6.1.6.1
Factor out of .
Step 3.6.1.6.2
Factor out of .
Step 3.6.1.6.3
Factor out of .
Step 3.6.1.6.4
Factor out of .
Step 3.6.1.6.5
Factor out of .
Step 3.6.1.6.6
Factor out of .
Step 3.6.1.6.7
Factor out of .
Step 3.6.1.7
Replace all occurrences of with .
Step 3.6.1.8
Simplify.
Tap for more steps...
Step 3.6.1.8.1
Simplify each term.
Tap for more steps...
Step 3.6.1.8.1.1
Multiply by .
Step 3.6.1.8.1.2
Apply the distributive property.
Step 3.6.1.8.1.3
Multiply by .
Step 3.6.1.8.2
Combine the opposite terms in .
Tap for more steps...
Step 3.6.1.8.2.1
Subtract from .
Step 3.6.1.8.2.2
Add and .
Step 3.6.1.8.2.3
Add and .
Step 3.6.1.8.2.4
Add and .
Step 3.6.1.9
Multiply by .
Step 3.6.1.10
Rewrite as .
Step 3.6.1.11
Pull terms out from under the radical, assuming positive real numbers.
Step 3.6.2
Multiply by .
Step 3.7
The final answer is the combination of both solutions.