Enter a problem...
Algebra Examples
p(x)=(x+2)(2x2+3x-9)p(x)=(x+2)(2x2+3x−9)
Step 1
Step 1.1
To find the x-intercept(s), substitute in 00 for yy and solve for xx.
0=(x+2)(2x2+3x-9)0=(x+2)(2x2+3x−9)
Step 1.2
Solve the equation.
Step 1.2.1
Rewrite the equation as (x+2)(2x2+3x-9)=0(x+2)(2x2+3x−9)=0.
(x+2)(2x2+3x-9)=0(x+2)(2x2+3x−9)=0
Step 1.2.2
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
x+2=0x+2=0
2x2+3x-9=02x2+3x−9=0
Step 1.2.3
Set x+2x+2 equal to 00 and solve for xx.
Step 1.2.3.1
Set x+2x+2 equal to 00.
x+2=0x+2=0
Step 1.2.3.2
Subtract 22 from both sides of the equation.
x=-2x=−2
x=-2x=−2
Step 1.2.4
Set 2x2+3x-92x2+3x−9 equal to 00 and solve for xx.
Step 1.2.4.1
Set 2x2+3x-92x2+3x−9 equal to 00.
2x2+3x-9=02x2+3x−9=0
Step 1.2.4.2
Solve 2x2+3x-9=02x2+3x−9=0 for xx.
Step 1.2.4.2.1
Factor by grouping.
Step 1.2.4.2.1.1
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=2⋅-9=-18a⋅c=2⋅−9=−18 and whose sum is b=3b=3.
Step 1.2.4.2.1.1.1
Factor 33 out of 3x3x.
2x2+3(x)-9=02x2+3(x)−9=0
Step 1.2.4.2.1.1.2
Rewrite 33 as -3−3 plus 66
2x2+(-3+6)x-9=02x2+(−3+6)x−9=0
Step 1.2.4.2.1.1.3
Apply the distributive property.
2x2-3x+6x-9=02x2−3x+6x−9=0
2x2-3x+6x-9=02x2−3x+6x−9=0
Step 1.2.4.2.1.2
Factor out the greatest common factor from each group.
Step 1.2.4.2.1.2.1
Group the first two terms and the last two terms.
(2x2-3x)+6x-9=0(2x2−3x)+6x−9=0
Step 1.2.4.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
x(2x-3)+3(2x-3)=0x(2x−3)+3(2x−3)=0
x(2x-3)+3(2x-3)=0x(2x−3)+3(2x−3)=0
Step 1.2.4.2.1.3
Factor the polynomial by factoring out the greatest common factor, 2x-32x−3.
(2x-3)(x+3)=0(2x−3)(x+3)=0
(2x-3)(x+3)=0(2x−3)(x+3)=0
Step 1.2.4.2.2
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
2x-3=02x−3=0
x+3=0x+3=0
Step 1.2.4.2.3
Set 2x-32x−3 equal to 00 and solve for xx.
Step 1.2.4.2.3.1
Set 2x-32x−3 equal to 00.
2x-3=02x−3=0
Step 1.2.4.2.3.2
Solve 2x-3=02x−3=0 for xx.
Step 1.2.4.2.3.2.1
Add 33 to both sides of the equation.
2x=32x=3
Step 1.2.4.2.3.2.2
Divide each term in 2x=32x=3 by 22 and simplify.
Step 1.2.4.2.3.2.2.1
Divide each term in 2x=32x=3 by 22.
2x2=322x2=32
Step 1.2.4.2.3.2.2.2
Simplify the left side.
Step 1.2.4.2.3.2.2.2.1
Cancel the common factor of 22.
Step 1.2.4.2.3.2.2.2.1.1
Cancel the common factor.
2x2=32
Step 1.2.4.2.3.2.2.2.1.2
Divide x by 1.
x=32
x=32
x=32
x=32
x=32
x=32
Step 1.2.4.2.4
Set x+3 equal to 0 and solve for x.
Step 1.2.4.2.4.1
Set x+3 equal to 0.
x+3=0
Step 1.2.4.2.4.2
Subtract 3 from both sides of the equation.
x=-3
x=-3
Step 1.2.4.2.5
The final solution is all the values that make (2x-3)(x+3)=0 true.
x=32,-3
x=32,-3
x=32,-3
Step 1.2.5
The final solution is all the values that make (x+2)(2x2+3x-9)=0 true.
x=-2,32,-3
x=-2,32,-3
Step 1.3
x-intercept(s) in point form.
x-intercept(s): (-2,0),(32,0),(-3,0)
x-intercept(s): (-2,0),(32,0),(-3,0)
Step 2
Step 2.1
To find the y-intercept(s), substitute in 0 for x and solve for y.
y=((0)+2)(2(0)2+3(0)-9)
Step 2.2
Solve the equation.
Step 2.2.1
Remove parentheses.
y=(0+2)(2(0)2+3(0)-9)
Step 2.2.2
Remove parentheses.
y=(0+2)(2⋅02+3(0)-9)
Step 2.2.3
Remove parentheses.
y=((0)+2)(2(0)2+3(0)-9)
Step 2.2.4
Simplify ((0)+2)(2(0)2+3(0)-9).
Step 2.2.4.1
Add 0 and 2.
y=2(2(0)2+3(0)-9)
Step 2.2.4.2
Simplify each term.
Step 2.2.4.2.1
Raising 0 to any positive power yields 0.
y=2(2⋅0+3(0)-9)
Step 2.2.4.2.2
Multiply 2 by 0.
y=2(0+3(0)-9)
Step 2.2.4.2.3
Multiply 3 by 0.
y=2(0+0-9)
y=2(0+0-9)
Step 2.2.4.3
Simplify the expression.
Step 2.2.4.3.1
Add 0 and 0.
y=2(0-9)
Step 2.2.4.3.2
Subtract 9 from 0.
y=2⋅-9
Step 2.2.4.3.3
Multiply 2 by -9.
y=-18
y=-18
y=-18
y=-18
Step 2.3
y-intercept(s) in point form.
y-intercept(s): (0,-18)
y-intercept(s): (0,-18)
Step 3
List the intersections.
x-intercept(s): (-2,0),(32,0),(-3,0)
y-intercept(s): (0,-18)
Step 4