Algebra Examples

Find the Equation Using Point-Slope Formula (-5,7) and (-4,0)
and
Step 1
Find the slope of the line between and using , which is the change of over the change of .
Tap for more steps...
Step 1.1
Slope is equal to the change in over the change in , or rise over run.
Step 1.2
The change in is equal to the difference in x-coordinates (also called run), and the change in is equal to the difference in y-coordinates (also called rise).
Step 1.3
Substitute in the values of and into the equation to find the slope.
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Simplify the numerator.
Tap for more steps...
Step 1.4.1.1
Multiply by .
Step 1.4.1.2
Subtract from .
Step 1.4.2
Simplify the denominator.
Tap for more steps...
Step 1.4.2.1
Multiply by .
Step 1.4.2.2
Add and .
Step 1.4.3
Divide by .
Step 2
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 3
Simplify the equation and keep it in point-slope form.
Step 4
Solve for .
Tap for more steps...
Step 4.1
Simplify .
Tap for more steps...
Step 4.1.1
Rewrite.
Step 4.1.2
Simplify by adding zeros.
Step 4.1.3
Apply the distributive property.
Step 4.1.4
Multiply by .
Step 4.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 4.2.1
Add to both sides of the equation.
Step 4.2.2
Add and .
Step 5
List the equation in different forms.
Slope-intercept form:
Point-slope form:
Step 6