Algebra Examples

Find the Inverse f(x)=(7x+2)/3+5
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Simplify .
Tap for more steps...
Step 3.2.1
To write as a fraction with a common denominator, multiply by .
Step 3.2.2
Simplify terms.
Tap for more steps...
Step 3.2.2.1
Combine and .
Step 3.2.2.2
Combine the numerators over the common denominator.
Step 3.2.3
Simplify the numerator.
Tap for more steps...
Step 3.2.3.1
Multiply by .
Step 3.2.3.2
Add and .
Step 3.3
Multiply both sides by .
Step 3.4
Simplify.
Tap for more steps...
Step 3.4.1
Simplify the left side.
Tap for more steps...
Step 3.4.1.1
Cancel the common factor of .
Tap for more steps...
Step 3.4.1.1.1
Cancel the common factor.
Step 3.4.1.1.2
Rewrite the expression.
Step 3.4.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.1
Move to the left of .
Step 3.5
Solve for .
Tap for more steps...
Step 3.5.1
Subtract from both sides of the equation.
Step 3.5.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.5.2.1
Divide each term in by .
Step 3.5.2.2
Simplify the left side.
Tap for more steps...
Step 3.5.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.5.2.2.1.1
Cancel the common factor.
Step 3.5.2.2.1.2
Divide by .
Step 3.5.2.3
Simplify the right side.
Tap for more steps...
Step 3.5.2.3.1
Move the negative in front of the fraction.
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Tap for more steps...
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Combine the numerators over the common denominator.
Step 5.2.4
Simplify each term.
Tap for more steps...
Step 5.2.4.1
To write as a fraction with a common denominator, multiply by .
Step 5.2.4.2
Combine and .
Step 5.2.4.3
Combine the numerators over the common denominator.
Step 5.2.4.4
Simplify the numerator.
Tap for more steps...
Step 5.2.4.4.1
Multiply by .
Step 5.2.4.4.2
Add and .
Step 5.2.4.5
Cancel the common factor of .
Tap for more steps...
Step 5.2.4.5.1
Cancel the common factor.
Step 5.2.4.5.2
Rewrite the expression.
Step 5.2.5
Simplify terms.
Tap for more steps...
Step 5.2.5.1
Combine the opposite terms in .
Tap for more steps...
Step 5.2.5.1.1
Subtract from .
Step 5.2.5.1.2
Add and .
Step 5.2.5.2
Cancel the common factor of .
Tap for more steps...
Step 5.2.5.2.1
Cancel the common factor.
Step 5.2.5.2.2
Divide by .
Step 5.3
Evaluate .
Tap for more steps...
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
Simplify the numerator.
Tap for more steps...
Step 5.3.3.1.1
Apply the distributive property.
Step 5.3.3.1.2
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.1.2.1
Cancel the common factor.
Step 5.3.3.1.2.2
Rewrite the expression.
Step 5.3.3.1.3
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.1.3.1
Move the leading negative in into the numerator.
Step 5.3.3.1.3.2
Cancel the common factor.
Step 5.3.3.1.3.3
Rewrite the expression.
Step 5.3.3.1.4
Add and .
Step 5.3.3.1.5
Factor out of .
Tap for more steps...
Step 5.3.3.1.5.1
Factor out of .
Step 5.3.3.1.5.2
Factor out of .
Step 5.3.3.1.5.3
Factor out of .
Step 5.3.3.2
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.2.1
Cancel the common factor.
Step 5.3.3.2.2
Divide by .
Step 5.3.4
Combine the opposite terms in .
Tap for more steps...
Step 5.3.4.1
Add and .
Step 5.3.4.2
Add and .
Step 5.4
Since and , then is the inverse of .