Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Move all terms not containing to the right side of the equation.
Step 2.2.1
Add to both sides of the equation.
Step 2.2.2
Add to both sides of the equation.
Step 2.3
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.4
Simplify the exponent.
Step 2.4.1
Simplify the left side.
Step 2.4.1.1
Simplify .
Step 2.4.1.1.1
Multiply the exponents in .
Step 2.4.1.1.1.1
Apply the power rule and multiply exponents, .
Step 2.4.1.1.1.2
Cancel the common factor of .
Step 2.4.1.1.1.2.1
Cancel the common factor.
Step 2.4.1.1.1.2.2
Rewrite the expression.
Step 2.4.1.1.2
Simplify.
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify .
Step 2.4.2.1.1
Rewrite as .
Step 2.4.2.1.2
Expand using the FOIL Method.
Step 2.4.2.1.2.1
Apply the distributive property.
Step 2.4.2.1.2.2
Apply the distributive property.
Step 2.4.2.1.2.3
Apply the distributive property.
Step 2.4.2.1.3
Simplify and combine like terms.
Step 2.4.2.1.3.1
Simplify each term.
Step 2.4.2.1.3.1.1
Multiply by .
Step 2.4.2.1.3.1.2
Move to the left of .
Step 2.4.2.1.3.1.3
Multiply by .
Step 2.4.2.1.3.2
Add and .
Step 2.5
Simplify .
Step 2.5.1
Move .
Step 2.5.2
Reorder and .
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Simplify each term.
Step 4.2.3.1
Rewrite as .
Step 4.2.3.2
Expand using the FOIL Method.
Step 4.2.3.2.1
Apply the distributive property.
Step 4.2.3.2.2
Apply the distributive property.
Step 4.2.3.2.3
Apply the distributive property.
Step 4.2.3.3
Simplify and combine like terms.
Step 4.2.3.3.1
Simplify each term.
Step 4.2.3.3.1.1
Multiply by by adding the exponents.
Step 4.2.3.3.1.1.1
Use the power rule to combine exponents.
Step 4.2.3.3.1.1.2
Combine the numerators over the common denominator.
Step 4.2.3.3.1.1.3
Add and .
Step 4.2.3.3.1.1.4
Divide by .
Step 4.2.3.3.1.2
Simplify .
Step 4.2.3.3.1.3
Move to the left of .
Step 4.2.3.3.1.4
Multiply by .
Step 4.2.3.3.2
Subtract from .
Step 4.2.3.4
Apply the distributive property.
Step 4.2.3.5
Multiply by .
Step 4.2.4
Simplify by adding terms.
Step 4.2.4.1
Combine the opposite terms in .
Step 4.2.4.1.1
Add and .
Step 4.2.4.1.2
Add and .
Step 4.2.4.2
Subtract from .
Step 4.2.4.3
Combine the opposite terms in .
Step 4.2.4.3.1
Add and .
Step 4.2.4.3.2
Add and .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Simplify each term.
Step 4.3.3.1
Factor using the perfect square rule.
Step 4.3.3.1.1
Rewrite as .
Step 4.3.3.1.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 4.3.3.1.3
Rewrite the polynomial.
Step 4.3.3.1.4
Factor using the perfect square trinomial rule , where and .
Step 4.3.3.2
Apply the power rule and multiply exponents, .
Step 4.3.3.3
Cancel the common factor of .
Step 4.3.3.3.1
Cancel the common factor.
Step 4.3.3.3.2
Rewrite the expression.
Step 4.3.3.4
Simplify.
Step 4.3.4
Combine the opposite terms in .
Step 4.3.4.1
Subtract from .
Step 4.3.4.2
Add and .
Step 4.4
Since and , then is the inverse of .