Enter a problem...
Algebra Examples
x12-7x12−7
Step 1
Interchange the variables.
x=y12-7
Step 2
Step 2.1
Rewrite the equation as y12-7=x.
y12-7=x
Step 2.2
Move all terms not containing y to the right side of the equation.
Step 2.2.1
Add 7 to both sides of the equation.
y12-x=7
Step 2.2.2
Add x to both sides of the equation.
y12=7+x
y12=7+x
Step 2.3
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(y12)2=(7+x)2
Step 2.4
Simplify the exponent.
Step 2.4.1
Simplify the left side.
Step 2.4.1.1
Simplify (y12)2.
Step 2.4.1.1.1
Multiply the exponents in (y12)2.
Step 2.4.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
y12⋅2=(7+x)2
Step 2.4.1.1.1.2
Cancel the common factor of 2.
Step 2.4.1.1.1.2.1
Cancel the common factor.
y12⋅2=(7+x)2
Step 2.4.1.1.1.2.2
Rewrite the expression.
y1=(7+x)2
y1=(7+x)2
y1=(7+x)2
Step 2.4.1.1.2
Simplify.
y=(7+x)2
y=(7+x)2
y=(7+x)2
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify (7+x)2.
Step 2.4.2.1.1
Rewrite (7+x)2 as (7+x)(7+x).
y=(7+x)(7+x)
Step 2.4.2.1.2
Expand (7+x)(7+x) using the FOIL Method.
Step 2.4.2.1.2.1
Apply the distributive property.
y=7(7+x)+x(7+x)
Step 2.4.2.1.2.2
Apply the distributive property.
y=7⋅7+7x+x(7+x)
Step 2.4.2.1.2.3
Apply the distributive property.
y=7⋅7+7x+x⋅7+x⋅x
y=7⋅7+7x+x⋅7+x⋅x
Step 2.4.2.1.3
Simplify and combine like terms.
Step 2.4.2.1.3.1
Simplify each term.
Step 2.4.2.1.3.1.1
Multiply 7 by 7.
y=49+7x+x⋅7+x⋅x
Step 2.4.2.1.3.1.2
Move 7 to the left of x.
y=49+7x+7⋅x+x⋅x
Step 2.4.2.1.3.1.3
Multiply x by x.
y=49+7x+7x+x2
y=49+7x+7x+x2
Step 2.4.2.1.3.2
Add 7x and 7x.
y=49+14x+x2
y=49+14x+x2
y=49+14x+x2
y=49+14x+x2
y=49+14x+x2
Step 2.5
Simplify 49+14x+x2.
Step 2.5.1
Move 49.
y=14x+x2+49
Step 2.5.2
Reorder 14x and x2.
y=x2+14x+49
y=x2+14x+49
y=x2+14x+49
Step 3
Replace y with f-1(x) to show the final answer.
f-1(x)=x2+14x+49
Step 4
Step 4.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 4.2
Evaluate f-1(f(x)).
Step 4.2.1
Set up the composite result function.
f-1(f(x))
Step 4.2.2
Evaluate f-1(x12-7) by substituting in the value of f into f-1.
f-1(x12-7)=(x12-7)2+14(x12-7)+49
Step 4.2.3
Simplify each term.
Step 4.2.3.1
Rewrite (x12-7)2 as (x12-7)(x12-7).
f-1(x12-7)=(x12-7)(x12-7)+14(x12-7)+49
Step 4.2.3.2
Expand (x12-7)(x12-7) using the FOIL Method.
Step 4.2.3.2.1
Apply the distributive property.
f-1(x12-7)=x12(x12-7)-7(x12-7)+14(x12-7)+49
Step 4.2.3.2.2
Apply the distributive property.
f-1(x12-7)=x12x12+x12⋅-7-7(x12-7)+14(x12-7)+49
Step 4.2.3.2.3
Apply the distributive property.
f-1(x12-7)=x12x12+x12⋅-7-7x12-7⋅-7+14(x12-7)+49
f-1(x12-7)=x12x12+x12⋅-7-7x12-7⋅-7+14(x12-7)+49
Step 4.2.3.3
Simplify and combine like terms.
Step 4.2.3.3.1
Simplify each term.
Step 4.2.3.3.1.1
Multiply x12 by x12 by adding the exponents.
Step 4.2.3.3.1.1.1
Use the power rule aman=am+n to combine exponents.
f-1(x12-7)=x12+12+x12⋅-7-7x12-7⋅-7+14(x12-7)+49
Step 4.2.3.3.1.1.2
Combine the numerators over the common denominator.
f-1(x12-7)=x1+12+x12⋅-7-7x12-7⋅-7+14(x12-7)+49
Step 4.2.3.3.1.1.3
Add 1 and 1.
f-1(x12-7)=x22+x12⋅-7-7x12-7⋅-7+14(x12-7)+49
Step 4.2.3.3.1.1.4
Divide 2 by 2.
f-1(x12-7)=x+x12⋅-7-7x12-7⋅-7+14(x12-7)+49
f-1(x12-7)=x+x12⋅-7-7x12-7⋅-7+14(x12-7)+49
Step 4.2.3.3.1.2
Simplify x1.
f-1(x12-7)=x+x12⋅-7-7x12-7⋅-7+14(x12-7)+49
Step 4.2.3.3.1.3
Move -7 to the left of x12.
f-1(x12-7)=x-7⋅x12-7x12-7⋅-7+14(x12-7)+49
Step 4.2.3.3.1.4
Multiply -7 by -7.
f-1(x12-7)=x-7x12-7x12+49+14(x12-7)+49
f-1(x12-7)=x-7x12-7x12+49+14(x12-7)+49
Step 4.2.3.3.2
Subtract 7x12 from -7x12.
f-1(x12-7)=x-14x12+49+14(x12-7)+49
f-1(x12-7)=x-14x12+49+14(x12-7)+49
Step 4.2.3.4
Apply the distributive property.
f-1(x12-7)=x-14x12+49+14x12+14⋅-7+49
Step 4.2.3.5
Multiply 14 by -7.
f-1(x12-7)=x-14x12+49+14x12-98+49
f-1(x12-7)=x-14x12+49+14x12-98+49
Step 4.2.4
Simplify by adding terms.
Step 4.2.4.1
Combine the opposite terms in x-14x12+49+14x12-98+49.
Step 4.2.4.1.1
Add -14x12 and 14x12.
f-1(x12-7)=x+0+49-98+49
Step 4.2.4.1.2
Add x and 0.
f-1(x12-7)=x+49-98+49
f-1(x12-7)=x+49-98+49
Step 4.2.4.2
Subtract 98 from 49.
f-1(x12-7)=x-49+49
Step 4.2.4.3
Combine the opposite terms in x-49+49.
Step 4.2.4.3.1
Add -49 and 49.
f-1(x12-7)=x+0
Step 4.2.4.3.2
Add x and 0.
f-1(x12-7)=x
f-1(x12-7)=x
f-1(x12-7)=x
f-1(x12-7)=x
Step 4.3
Evaluate f(f-1(x)).
Step 4.3.1
Set up the composite result function.
f(f-1(x))
Step 4.3.2
Evaluate f(x2+14x+49) by substituting in the value of f-1 into f.
f(x2+14x+49)=(x2+14x+49)12-7
Step 4.3.3
Simplify each term.
Step 4.3.3.1
Factor using the perfect square rule.
Step 4.3.3.1.1
Rewrite 49 as 72.
f(x2+14x+49)=(x2+14x+72)12-7
Step 4.3.3.1.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
14x=2⋅x⋅7
Step 4.3.3.1.3
Rewrite the polynomial.
f(x2+14x+49)=(x2+2⋅x⋅7+72)12-7
Step 4.3.3.1.4
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2, where a=x and b=7.
f(x2+14x+49)=((x+7)2)12-7
f(x2+14x+49)=((x+7)2)12-7
Step 4.3.3.2
Apply the power rule and multiply exponents, (am)n=amn.
f(x2+14x+49)=(x+7)2(12)-7
Step 4.3.3.3
Cancel the common factor of 2.
Step 4.3.3.3.1
Cancel the common factor.
f(x2+14x+49)=(x+7)2(12)-7
Step 4.3.3.3.2
Rewrite the expression.
f(x2+14x+49)=(x+7)-7
f(x2+14x+49)=(x+7)-7
Step 4.3.3.4
Simplify.
f(x2+14x+49)=x+7-7
f(x2+14x+49)=x+7-7
Step 4.3.4
Combine the opposite terms in x+7-7.
Step 4.3.4.1
Subtract 7 from 7.
f(x2+14x+49)=x+0
Step 4.3.4.2
Add x and 0.
f(x2+14x+49)=x
f(x2+14x+49)=x
f(x2+14x+49)=x
Step 4.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=x2+14x+49 is the inverse of f(x)=x12-7.
f-1(x)=x2+14x+49
f-1(x)=x2+14x+49