Algebra Examples

Find the Inverse x^(1/2)-7
x12-7x127
Step 1
Interchange the variables.
x=y12-7
Step 2
Solve for y.
Tap for more steps...
Step 2.1
Rewrite the equation as y12-7=x.
y12-7=x
Step 2.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.2.1
Add 7 to both sides of the equation.
y12-x=7
Step 2.2.2
Add x to both sides of the equation.
y12=7+x
y12=7+x
Step 2.3
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(y12)2=(7+x)2
Step 2.4
Simplify the exponent.
Tap for more steps...
Step 2.4.1
Simplify the left side.
Tap for more steps...
Step 2.4.1.1
Simplify (y12)2.
Tap for more steps...
Step 2.4.1.1.1
Multiply the exponents in (y12)2.
Tap for more steps...
Step 2.4.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
y122=(7+x)2
Step 2.4.1.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 2.4.1.1.1.2.1
Cancel the common factor.
y122=(7+x)2
Step 2.4.1.1.1.2.2
Rewrite the expression.
y1=(7+x)2
y1=(7+x)2
y1=(7+x)2
Step 2.4.1.1.2
Simplify.
y=(7+x)2
y=(7+x)2
y=(7+x)2
Step 2.4.2
Simplify the right side.
Tap for more steps...
Step 2.4.2.1
Simplify (7+x)2.
Tap for more steps...
Step 2.4.2.1.1
Rewrite (7+x)2 as (7+x)(7+x).
y=(7+x)(7+x)
Step 2.4.2.1.2
Expand (7+x)(7+x) using the FOIL Method.
Tap for more steps...
Step 2.4.2.1.2.1
Apply the distributive property.
y=7(7+x)+x(7+x)
Step 2.4.2.1.2.2
Apply the distributive property.
y=77+7x+x(7+x)
Step 2.4.2.1.2.3
Apply the distributive property.
y=77+7x+x7+xx
y=77+7x+x7+xx
Step 2.4.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.4.2.1.3.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.3.1.1
Multiply 7 by 7.
y=49+7x+x7+xx
Step 2.4.2.1.3.1.2
Move 7 to the left of x.
y=49+7x+7x+xx
Step 2.4.2.1.3.1.3
Multiply x by x.
y=49+7x+7x+x2
y=49+7x+7x+x2
Step 2.4.2.1.3.2
Add 7x and 7x.
y=49+14x+x2
y=49+14x+x2
y=49+14x+x2
y=49+14x+x2
y=49+14x+x2
Step 2.5
Simplify 49+14x+x2.
Tap for more steps...
Step 2.5.1
Move 49.
y=14x+x2+49
Step 2.5.2
Reorder 14x and x2.
y=x2+14x+49
y=x2+14x+49
y=x2+14x+49
Step 3
Replace y with f-1(x) to show the final answer.
f-1(x)=x2+14x+49
Step 4
Verify if f-1(x)=x2+14x+49 is the inverse of f(x)=x12-7.
Tap for more steps...
Step 4.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 4.2
Evaluate f-1(f(x)).
Tap for more steps...
Step 4.2.1
Set up the composite result function.
f-1(f(x))
Step 4.2.2
Evaluate f-1(x12-7) by substituting in the value of f into f-1.
f-1(x12-7)=(x12-7)2+14(x12-7)+49
Step 4.2.3
Simplify each term.
Tap for more steps...
Step 4.2.3.1
Rewrite (x12-7)2 as (x12-7)(x12-7).
f-1(x12-7)=(x12-7)(x12-7)+14(x12-7)+49
Step 4.2.3.2
Expand (x12-7)(x12-7) using the FOIL Method.
Tap for more steps...
Step 4.2.3.2.1
Apply the distributive property.
f-1(x12-7)=x12(x12-7)-7(x12-7)+14(x12-7)+49
Step 4.2.3.2.2
Apply the distributive property.
f-1(x12-7)=x12x12+x12-7-7(x12-7)+14(x12-7)+49
Step 4.2.3.2.3
Apply the distributive property.
f-1(x12-7)=x12x12+x12-7-7x12-7-7+14(x12-7)+49
f-1(x12-7)=x12x12+x12-7-7x12-7-7+14(x12-7)+49
Step 4.2.3.3
Simplify and combine like terms.
Tap for more steps...
Step 4.2.3.3.1
Simplify each term.
Tap for more steps...
Step 4.2.3.3.1.1
Multiply x12 by x12 by adding the exponents.
Tap for more steps...
Step 4.2.3.3.1.1.1
Use the power rule aman=am+n to combine exponents.
f-1(x12-7)=x12+12+x12-7-7x12-7-7+14(x12-7)+49
Step 4.2.3.3.1.1.2
Combine the numerators over the common denominator.
f-1(x12-7)=x1+12+x12-7-7x12-7-7+14(x12-7)+49
Step 4.2.3.3.1.1.3
Add 1 and 1.
f-1(x12-7)=x22+x12-7-7x12-7-7+14(x12-7)+49
Step 4.2.3.3.1.1.4
Divide 2 by 2.
f-1(x12-7)=x+x12-7-7x12-7-7+14(x12-7)+49
f-1(x12-7)=x+x12-7-7x12-7-7+14(x12-7)+49
Step 4.2.3.3.1.2
Simplify x1.
f-1(x12-7)=x+x12-7-7x12-7-7+14(x12-7)+49
Step 4.2.3.3.1.3
Move -7 to the left of x12.
f-1(x12-7)=x-7x12-7x12-7-7+14(x12-7)+49
Step 4.2.3.3.1.4
Multiply -7 by -7.
f-1(x12-7)=x-7x12-7x12+49+14(x12-7)+49
f-1(x12-7)=x-7x12-7x12+49+14(x12-7)+49
Step 4.2.3.3.2
Subtract 7x12 from -7x12.
f-1(x12-7)=x-14x12+49+14(x12-7)+49
f-1(x12-7)=x-14x12+49+14(x12-7)+49
Step 4.2.3.4
Apply the distributive property.
f-1(x12-7)=x-14x12+49+14x12+14-7+49
Step 4.2.3.5
Multiply 14 by -7.
f-1(x12-7)=x-14x12+49+14x12-98+49
f-1(x12-7)=x-14x12+49+14x12-98+49
Step 4.2.4
Simplify by adding terms.
Tap for more steps...
Step 4.2.4.1
Combine the opposite terms in x-14x12+49+14x12-98+49.
Tap for more steps...
Step 4.2.4.1.1
Add -14x12 and 14x12.
f-1(x12-7)=x+0+49-98+49
Step 4.2.4.1.2
Add x and 0.
f-1(x12-7)=x+49-98+49
f-1(x12-7)=x+49-98+49
Step 4.2.4.2
Subtract 98 from 49.
f-1(x12-7)=x-49+49
Step 4.2.4.3
Combine the opposite terms in x-49+49.
Tap for more steps...
Step 4.2.4.3.1
Add -49 and 49.
f-1(x12-7)=x+0
Step 4.2.4.3.2
Add x and 0.
f-1(x12-7)=x
f-1(x12-7)=x
f-1(x12-7)=x
f-1(x12-7)=x
Step 4.3
Evaluate f(f-1(x)).
Tap for more steps...
Step 4.3.1
Set up the composite result function.
f(f-1(x))
Step 4.3.2
Evaluate f(x2+14x+49) by substituting in the value of f-1 into f.
f(x2+14x+49)=(x2+14x+49)12-7
Step 4.3.3
Simplify each term.
Tap for more steps...
Step 4.3.3.1
Factor using the perfect square rule.
Tap for more steps...
Step 4.3.3.1.1
Rewrite 49 as 72.
f(x2+14x+49)=(x2+14x+72)12-7
Step 4.3.3.1.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
14x=2x7
Step 4.3.3.1.3
Rewrite the polynomial.
f(x2+14x+49)=(x2+2x7+72)12-7
Step 4.3.3.1.4
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2, where a=x and b=7.
f(x2+14x+49)=((x+7)2)12-7
f(x2+14x+49)=((x+7)2)12-7
Step 4.3.3.2
Apply the power rule and multiply exponents, (am)n=amn.
f(x2+14x+49)=(x+7)2(12)-7
Step 4.3.3.3
Cancel the common factor of 2.
Tap for more steps...
Step 4.3.3.3.1
Cancel the common factor.
f(x2+14x+49)=(x+7)2(12)-7
Step 4.3.3.3.2
Rewrite the expression.
f(x2+14x+49)=(x+7)-7
f(x2+14x+49)=(x+7)-7
Step 4.3.3.4
Simplify.
f(x2+14x+49)=x+7-7
f(x2+14x+49)=x+7-7
Step 4.3.4
Combine the opposite terms in x+7-7.
Tap for more steps...
Step 4.3.4.1
Subtract 7 from 7.
f(x2+14x+49)=x+0
Step 4.3.4.2
Add x and 0.
f(x2+14x+49)=x
f(x2+14x+49)=x
f(x2+14x+49)=x
Step 4.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=x2+14x+49 is the inverse of f(x)=x12-7.
f-1(x)=x2+14x+49
f-1(x)=x2+14x+49
 [x2  12  π  xdx ]