Algebra Examples

Solve the System of Equations 1/2x+y=-4 y=2x+16
12x+y=-4 y=2x+16
Step 1
Replace all occurrences of y with 2x+16 in each equation.
Tap for more steps...
Step 1.1
Replace all occurrences of y in 12x+y=-4 with 2x+16.
12x+2x+16=-4
y=2x+16
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Simplify 12x+2x+16.
Tap for more steps...
Step 1.2.1.1
Remove parentheses.
12x+2x+16=-4
y=2x+16
Step 1.2.1.2
Combine 12 and x.
x2+2x+16=-4
y=2x+16
Step 1.2.1.3
To write 2x as a fraction with a common denominator, multiply by 22.
x2+2x22+16=-4
y=2x+16
Step 1.2.1.4
Simplify terms.
Tap for more steps...
Step 1.2.1.4.1
Combine 2x and 22.
x2+2x22+16=-4
y=2x+16
Step 1.2.1.4.2
Combine the numerators over the common denominator.
x+2x22+16=-4
y=2x+16
x+2x22+16=-4
y=2x+16
Step 1.2.1.5
Simplify each term.
Tap for more steps...
Step 1.2.1.5.1
Simplify the numerator.
Tap for more steps...
Step 1.2.1.5.1.1
Factor x out of x+2x2.
Tap for more steps...
Step 1.2.1.5.1.1.1
Raise x to the power of 1.
x+2x22+16=-4
y=2x+16
Step 1.2.1.5.1.1.2
Factor x out of x1.
x1+2x22+16=-4
y=2x+16
Step 1.2.1.5.1.1.3
Factor x out of 2x2.
x1+x(22)2+16=-4
y=2x+16
Step 1.2.1.5.1.1.4
Factor x out of x1+x(22).
x(1+22)2+16=-4
y=2x+16
x(1+22)2+16=-4
y=2x+16
Step 1.2.1.5.1.2
Multiply 2 by 2.
x(1+4)2+16=-4
y=2x+16
Step 1.2.1.5.1.3
Add 1 and 4.
x52+16=-4
y=2x+16
x52+16=-4
y=2x+16
Step 1.2.1.5.2
Move 5 to the left of x.
5x2+16=-4
y=2x+16
5x2+16=-4
y=2x+16
5x2+16=-4
y=2x+16
5x2+16=-4
y=2x+16
5x2+16=-4
y=2x+16
Step 2
Solve for x in 5x2+16=-4.
Tap for more steps...
Step 2.1
Move all terms not containing x to the right side of the equation.
Tap for more steps...
Step 2.1.1
Subtract 16 from both sides of the equation.
5x2=-4-16
y=2x+16
Step 2.1.2
Subtract 16 from -4.
5x2=-20
y=2x+16
5x2=-20
y=2x+16
Step 2.2
Multiply both sides of the equation by 25.
255x2=25-20
y=2x+16
Step 2.3
Simplify both sides of the equation.
Tap for more steps...
Step 2.3.1
Simplify the left side.
Tap for more steps...
Step 2.3.1.1
Simplify 255x2.
Tap for more steps...
Step 2.3.1.1.1
Cancel the common factor of 2.
Tap for more steps...
Step 2.3.1.1.1.1
Cancel the common factor.
255x2=25-20
y=2x+16
Step 2.3.1.1.1.2
Rewrite the expression.
15(5x)=25-20
y=2x+16
15(5x)=25-20
y=2x+16
Step 2.3.1.1.2
Cancel the common factor of 5.
Tap for more steps...
Step 2.3.1.1.2.1
Factor 5 out of 5x.
15(5(x))=25-20
y=2x+16
Step 2.3.1.1.2.2
Cancel the common factor.
15(5x)=25-20
y=2x+16
Step 2.3.1.1.2.3
Rewrite the expression.
x=25-20
y=2x+16
x=25-20
y=2x+16
x=25-20
y=2x+16
x=25-20
y=2x+16
Step 2.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.1
Simplify 25-20.
Tap for more steps...
Step 2.3.2.1.1
Cancel the common factor of 5.
Tap for more steps...
Step 2.3.2.1.1.1
Factor 5 out of -20.
x=25(5(-4))
y=2x+16
Step 2.3.2.1.1.2
Cancel the common factor.
x=25(5-4)
y=2x+16
Step 2.3.2.1.1.3
Rewrite the expression.
x=2-4
y=2x+16
x=2-4
y=2x+16
Step 2.3.2.1.2
Multiply 2 by -4.
x=-8
y=2x+16
x=-8
y=2x+16
x=-8
y=2x+16
x=-8
y=2x+16
x=-8
y=2x+16
Step 3
Replace all occurrences of x with -8 in each equation.
Tap for more steps...
Step 3.1
Replace all occurrences of x in y=2x+16 with -8.
y=2(-8)+16
x=-8
Step 3.2
Simplify the right side.
Tap for more steps...
Step 3.2.1
Simplify 2(-8)+16.
Tap for more steps...
Step 3.2.1.1
Multiply 2 by -8.
y=-16+16
x=-8
Step 3.2.1.2
Add -16 and 16.
y=0
x=-8
y=0
x=-8
y=0
x=-8
y=0
x=-8
Step 4
The solution to the system is the complete set of ordered pairs that are valid solutions.
(-8,0)
Step 5
The result can be shown in multiple forms.
Point Form:
(-8,0)
Equation Form:
x=-8,y=0
Step 6
 [x2  12  π  xdx ]