Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3.4
Simplify each side of the equation.
Step 3.4.1
Use to rewrite as .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Combine fractions.
Step 3.4.2.1.1.1
Combine and .
Step 3.4.2.1.1.2
Apply the product rule to .
Step 3.4.2.1.2
Simplify the numerator.
Step 3.4.2.1.2.1
Multiply the exponents in .
Step 3.4.2.1.2.1.1
Apply the power rule and multiply exponents, .
Step 3.4.2.1.2.1.2
Cancel the common factor of .
Step 3.4.2.1.2.1.2.1
Cancel the common factor.
Step 3.4.2.1.2.1.2.2
Rewrite the expression.
Step 3.4.2.1.2.2
Simplify.
Step 3.4.2.1.3
Raise to the power of .
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Simplify .
Step 3.4.3.1.1
Rewrite as .
Step 3.4.3.1.2
Expand using the FOIL Method.
Step 3.4.3.1.2.1
Apply the distributive property.
Step 3.4.3.1.2.2
Apply the distributive property.
Step 3.4.3.1.2.3
Apply the distributive property.
Step 3.4.3.1.3
Simplify and combine like terms.
Step 3.4.3.1.3.1
Simplify each term.
Step 3.4.3.1.3.1.1
Multiply by .
Step 3.4.3.1.3.1.2
Move to the left of .
Step 3.4.3.1.3.1.3
Multiply by .
Step 3.4.3.1.3.2
Subtract from .
Step 3.5
Solve for .
Step 3.5.1
Multiply both sides of the equation by .
Step 3.5.2
Simplify both sides of the equation.
Step 3.5.2.1
Simplify the left side.
Step 3.5.2.1.1
Cancel the common factor of .
Step 3.5.2.1.1.1
Cancel the common factor.
Step 3.5.2.1.1.2
Rewrite the expression.
Step 3.5.2.2
Simplify the right side.
Step 3.5.2.2.1
Simplify .
Step 3.5.2.2.1.1
Apply the distributive property.
Step 3.5.2.2.1.2
Simplify.
Step 3.5.2.2.1.2.1
Multiply by .
Step 3.5.2.2.1.2.2
Multiply by .
Step 3.5.3
Move all terms not containing to the right side of the equation.
Step 3.5.3.1
Subtract from both sides of the equation.
Step 3.5.3.2
Subtract from .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Combine and .
Step 5.2.3.2
To write as a fraction with a common denominator, multiply by .
Step 5.2.3.3
Combine and .
Step 5.2.3.4
Combine the numerators over the common denominator.
Step 5.2.3.5
Multiply by .
Step 5.2.3.6
Apply the product rule to .
Step 5.2.3.7
Raise to the power of .
Step 5.2.3.8
Cancel the common factor of .
Step 5.2.3.8.1
Cancel the common factor.
Step 5.2.3.8.2
Rewrite the expression.
Step 5.2.3.9
Rewrite as .
Step 5.2.3.10
Expand using the FOIL Method.
Step 5.2.3.10.1
Apply the distributive property.
Step 5.2.3.10.2
Apply the distributive property.
Step 5.2.3.10.3
Apply the distributive property.
Step 5.2.3.11
Simplify and combine like terms.
Step 5.2.3.11.1
Simplify each term.
Step 5.2.3.11.1.1
Multiply .
Step 5.2.3.11.1.1.1
Raise to the power of .
Step 5.2.3.11.1.1.2
Raise to the power of .
Step 5.2.3.11.1.1.3
Use the power rule to combine exponents.
Step 5.2.3.11.1.1.4
Add and .
Step 5.2.3.11.1.2
Rewrite as .
Step 5.2.3.11.1.2.1
Use to rewrite as .
Step 5.2.3.11.1.2.2
Apply the power rule and multiply exponents, .
Step 5.2.3.11.1.2.3
Combine and .
Step 5.2.3.11.1.2.4
Cancel the common factor of .
Step 5.2.3.11.1.2.4.1
Cancel the common factor.
Step 5.2.3.11.1.2.4.2
Rewrite the expression.
Step 5.2.3.11.1.2.5
Simplify.
Step 5.2.3.11.1.3
Move to the left of .
Step 5.2.3.11.1.4
Multiply by .
Step 5.2.3.11.2
Add and .
Step 5.2.3.11.3
Add and .
Step 5.2.3.12
Combine and .
Step 5.2.3.13
To write as a fraction with a common denominator, multiply by .
Step 5.2.3.14
Combine and .
Step 5.2.3.15
Combine the numerators over the common denominator.
Step 5.2.3.16
Multiply by .
Step 5.2.3.17
Cancel the common factor of .
Step 5.2.3.17.1
Factor out of .
Step 5.2.3.17.2
Cancel the common factor.
Step 5.2.3.17.3
Rewrite the expression.
Step 5.2.3.18
Apply the distributive property.
Step 5.2.3.19
Multiply by .
Step 5.2.4
Simplify by adding terms.
Step 5.2.4.1
Combine the opposite terms in .
Step 5.2.4.1.1
Subtract from .
Step 5.2.4.1.2
Add and .
Step 5.2.4.2
Subtract from .
Step 5.2.4.3
Combine the opposite terms in .
Step 5.2.4.3.1
Add and .
Step 5.2.4.3.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Add and .
Step 5.3.3.2
Factor out of .
Step 5.3.3.2.1
Factor out of .
Step 5.3.3.2.2
Factor out of .
Step 5.3.3.2.3
Factor out of .
Step 5.3.3.2.4
Factor out of .
Step 5.3.3.2.5
Factor out of .
Step 5.3.3.3
Factor using the perfect square rule.
Step 5.3.3.3.1
Rewrite as .
Step 5.3.3.3.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 5.3.3.3.3
Rewrite the polynomial.
Step 5.3.3.3.4
Factor using the perfect square trinomial rule , where and .
Step 5.3.3.4
Rewrite as .
Step 5.3.3.5
Pull terms out from under the radical, assuming positive real numbers.
Step 5.3.3.6
Cancel the common factor of .
Step 5.3.3.6.1
Cancel the common factor.
Step 5.3.3.6.2
Rewrite the expression.
Step 5.3.4
Combine the opposite terms in .
Step 5.3.4.1
Add and .
Step 5.3.4.2
Add and .
Step 5.4
Since and , then is the inverse of .