Algebra Examples

Solve the System of Equations 4x^2+y=3 -x-y=11
Step 1
Subtract from both sides of the equation.
Step 2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Apply the distributive property.
Step 2.2.1.2
Multiply by .
Step 2.2.1.3
Multiply by .
Step 3
Solve for in .
Tap for more steps...
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Subtract from .
Step 3.3
Factor the left side of the equation.
Tap for more steps...
Step 3.3.1
Let . Substitute for all occurrences of .
Step 3.3.2
Factor by grouping.
Tap for more steps...
Step 3.3.2.1
Reorder terms.
Step 3.3.2.2
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 3.3.2.2.1
Factor out of .
Step 3.3.2.2.2
Rewrite as plus
Step 3.3.2.2.3
Apply the distributive property.
Step 3.3.2.3
Factor out the greatest common factor from each group.
Tap for more steps...
Step 3.3.2.3.1
Group the first two terms and the last two terms.
Step 3.3.2.3.2
Factor out the greatest common factor (GCF) from each group.
Step 3.3.2.4
Factor the polynomial by factoring out the greatest common factor, .
Step 3.3.3
Replace all occurrences of with .
Step 3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.5
Set equal to and solve for .
Tap for more steps...
Step 3.5.1
Set equal to .
Step 3.5.2
Solve for .
Tap for more steps...
Step 3.5.2.1
Subtract from both sides of the equation.
Step 3.5.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.5.2.2.1
Divide each term in by .
Step 3.5.2.2.2
Simplify the left side.
Tap for more steps...
Step 3.5.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.5.2.2.2.1.1
Cancel the common factor.
Step 3.5.2.2.2.1.2
Divide by .
Step 3.5.2.2.3
Simplify the right side.
Tap for more steps...
Step 3.5.2.2.3.1
Move the negative in front of the fraction.
Step 3.6
Set equal to and solve for .
Tap for more steps...
Step 3.6.1
Set equal to .
Step 3.6.2
Add to both sides of the equation.
Step 3.7
The final solution is all the values that make true.
Step 4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Tap for more steps...
Step 4.2.1
Simplify .
Tap for more steps...
Step 4.2.1.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1.1
Use the power rule to distribute the exponent.
Tap for more steps...
Step 4.2.1.1.1.1
Apply the product rule to .
Step 4.2.1.1.1.2
Apply the product rule to .
Step 4.2.1.1.2
Raise to the power of .
Step 4.2.1.1.3
Multiply by .
Step 4.2.1.1.4
Raise to the power of .
Step 4.2.1.1.5
Raise to the power of .
Step 4.2.1.1.6
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.1.6.1
Factor out of .
Step 4.2.1.1.6.2
Factor out of .
Step 4.2.1.1.6.3
Cancel the common factor.
Step 4.2.1.1.6.4
Rewrite the expression.
Step 4.2.1.1.7
Rewrite as .
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Combine and .
Step 4.2.1.4
Combine the numerators over the common denominator.
Step 4.2.1.5
Simplify the numerator.
Tap for more steps...
Step 4.2.1.5.1
Multiply by .
Step 4.2.1.5.2
Subtract from .
Step 4.2.1.6
Move the negative in front of the fraction.
Step 5
Replace all occurrences of with in each equation.
Tap for more steps...
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Tap for more steps...
Step 5.2.1
Simplify .
Tap for more steps...
Step 5.2.1.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1.1
Raise to the power of .
Step 5.2.1.1.2
Multiply by .
Step 5.2.1.2
Subtract from .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8