Enter a problem...
Algebra Examples
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Apply the distributive property.
Step 2.2.1.2
Multiply by .
Step 2.2.1.3
Multiply by .
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Subtract from .
Step 3.3
Factor the left side of the equation.
Step 3.3.1
Let . Substitute for all occurrences of .
Step 3.3.2
Factor by grouping.
Step 3.3.2.1
Reorder terms.
Step 3.3.2.2
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 3.3.2.2.1
Factor out of .
Step 3.3.2.2.2
Rewrite as plus
Step 3.3.2.2.3
Apply the distributive property.
Step 3.3.2.3
Factor out the greatest common factor from each group.
Step 3.3.2.3.1
Group the first two terms and the last two terms.
Step 3.3.2.3.2
Factor out the greatest common factor (GCF) from each group.
Step 3.3.2.4
Factor the polynomial by factoring out the greatest common factor, .
Step 3.3.3
Replace all occurrences of with .
Step 3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.5
Set equal to and solve for .
Step 3.5.1
Set equal to .
Step 3.5.2
Solve for .
Step 3.5.2.1
Subtract from both sides of the equation.
Step 3.5.2.2
Divide each term in by and simplify.
Step 3.5.2.2.1
Divide each term in by .
Step 3.5.2.2.2
Simplify the left side.
Step 3.5.2.2.2.1
Cancel the common factor of .
Step 3.5.2.2.2.1.1
Cancel the common factor.
Step 3.5.2.2.2.1.2
Divide by .
Step 3.5.2.2.3
Simplify the right side.
Step 3.5.2.2.3.1
Move the negative in front of the fraction.
Step 3.6
Set equal to and solve for .
Step 3.6.1
Set equal to .
Step 3.6.2
Add to both sides of the equation.
Step 3.7
The final solution is all the values that make true.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Use the power rule to distribute the exponent.
Step 4.2.1.1.1.1
Apply the product rule to .
Step 4.2.1.1.1.2
Apply the product rule to .
Step 4.2.1.1.2
Raise to the power of .
Step 4.2.1.1.3
Multiply by .
Step 4.2.1.1.4
Raise to the power of .
Step 4.2.1.1.5
Raise to the power of .
Step 4.2.1.1.6
Cancel the common factor of .
Step 4.2.1.1.6.1
Factor out of .
Step 4.2.1.1.6.2
Factor out of .
Step 4.2.1.1.6.3
Cancel the common factor.
Step 4.2.1.1.6.4
Rewrite the expression.
Step 4.2.1.1.7
Rewrite as .
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Combine and .
Step 4.2.1.4
Combine the numerators over the common denominator.
Step 4.2.1.5
Simplify the numerator.
Step 4.2.1.5.1
Multiply by .
Step 4.2.1.5.2
Subtract from .
Step 4.2.1.6
Move the negative in front of the fraction.
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Simplify each term.
Step 5.2.1.1.1
Raise to the power of .
Step 5.2.1.1.2
Multiply by .
Step 5.2.1.2
Subtract from .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8