Algebra Examples

Simplify (t^2+3)/(t^4-16)+7/(16-t^4)
t2+3t4-16+716-t4t2+3t416+716t4
Step 1
Simplify terms.
Tap for more steps...
Step 1.1
Simplify each term.
Tap for more steps...
Step 1.1.1
Simplify the denominator.
Tap for more steps...
Step 1.1.1.1
Rewrite t4t4 as (t2)2(t2)2.
t2+3(t2)2-16+716-t4t2+3(t2)216+716t4
Step 1.1.1.2
Rewrite 1616 as 4242.
t2+3(t2)2-42+716-t4t2+3(t2)242+716t4
Step 1.1.1.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=t2a=t2 and b=4b=4.
t2+3(t2+4)(t2-4)+716-t4t2+3(t2+4)(t24)+716t4
Step 1.1.1.4
Simplify.
Tap for more steps...
Step 1.1.1.4.1
Rewrite 44 as 2222.
t2+3(t2+4)(t2-22)+716-t4t2+3(t2+4)(t222)+716t4
Step 1.1.1.4.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=ta=t and b=2b=2.
t2+3(t2+4)(t+2)(t-2)+716-t4t2+3(t2+4)(t+2)(t2)+716t4
t2+3(t2+4)(t+2)(t-2)+716-t4t2+3(t2+4)(t+2)(t2)+716t4
t2+3(t2+4)(t+2)(t-2)+716-t4t2+3(t2+4)(t+2)(t2)+716t4
Step 1.1.2
Simplify the denominator.
Tap for more steps...
Step 1.1.2.1
Rewrite 1616 as 4242.
t2+3(t2+4)(t+2)(t-2)+742-t4t2+3(t2+4)(t+2)(t2)+742t4
Step 1.1.2.2
Rewrite t4t4 as (t2)2(t2)2.
t2+3(t2+4)(t+2)(t-2)+742-(t2)2t2+3(t2+4)(t+2)(t2)+742(t2)2
Step 1.1.2.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=4a=4 and b=t2b=t2.
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(4-t2)t2+3(t2+4)(t+2)(t2)+7(4+t2)(4t2)
Step 1.1.2.4
Simplify.
Tap for more steps...
Step 1.1.2.4.1
Rewrite 44 as 2222.
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(22-t2)t2+3(t2+4)(t+2)(t2)+7(4+t2)(22t2)
Step 1.1.2.4.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=2a=2 and b=tb=t.
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(2+t)(2-t)t2+3(t2+4)(t+2)(t2)+7(4+t2)(2+t)(2t)
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(2+t)(2-t)t2+3(t2+4)(t+2)(t2)+7(4+t2)(2+t)(2t)
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(2+t)(2-t)t2+3(t2+4)(t+2)(t2)+7(4+t2)(2+t)(2t)
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(2+t)(2-t)t2+3(t2+4)(t+2)(t2)+7(4+t2)(2+t)(2t)
Step 1.2
Simplify terms.
Tap for more steps...
Step 1.2.1
Reorder terms.
t2+3(t2+4)(t+2)(t-2)+7(t2+4)(2+t)(2-t)t2+3(t2+4)(t+2)(t2)+7(t2+4)(2+t)(2t)
Step 1.2.2
Reorder terms.
t2+3(t2+4)(t+2)(t-2)+7(t2+4)(t+2)(2-t)t2+3(t2+4)(t+2)(t2)+7(t2+4)(t+2)(2t)
Step 1.2.3
Rewrite 22 as -1(-2)1(2).
t2+3(t2+4)(t+2)(t-2)+7(t2+4)(t+2)(-1(-2)-t)t2+3(t2+4)(t+2)(t2)+7(t2+4)(t+2)(1(2)t)
Step 1.2.4
Factor -11 out of -tt.
t2+3(t2+4)(t+2)(t-2)+7(t2+4)(t+2)(-1(-2)-(t))t2+3(t2+4)(t+2)(t2)+7(t2+4)(t+2)(1(2)(t))
Step 1.2.5
Factor -1 out of -1(-2)-(t).
t2+3(t2+4)(t+2)(t-2)+7(t2+4)(t+2)(-1(-2+t))
Step 1.2.6
Simplify the expression.
Tap for more steps...
Step 1.2.6.1
Move a negative from the denominator of 7(t2+4)(t+2)(-1(-2+t)) to the numerator.
t2+3(t2+4)(t+2)(t-2)+-17(t2+4)(t+2)(-2+t)
Step 1.2.6.2
Reorder terms.
t2+3(t2+4)(t+2)(t-2)+-17(t2+4)(t+2)(t-2)
t2+3(t2+4)(t+2)(t-2)+-17(t2+4)(t+2)(t-2)
Step 1.2.7
Combine the numerators over the common denominator.
t2+3-17(t2+4)(t+2)(t-2)
t2+3-17(t2+4)(t+2)(t-2)
t2+3-17(t2+4)(t+2)(t-2)
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Multiply -1 by 7.
t2+3-7(t2+4)(t+2)(t-2)
Step 2.2
Subtract 7 from 3.
t2-4(t2+4)(t+2)(t-2)
Step 2.3
Rewrite t2-4 in a factored form.
Tap for more steps...
Step 2.3.1
Rewrite 4 as 22.
t2-22(t2+4)(t+2)(t-2)
Step 2.3.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=t and b=2.
(t+2)(t-2)(t2+4)(t+2)(t-2)
(t+2)(t-2)(t2+4)(t+2)(t-2)
(t+2)(t-2)(t2+4)(t+2)(t-2)
Step 3
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.1
Cancel the common factor of t+2.
Tap for more steps...
Step 3.1.1
Cancel the common factor.
(t+2)(t-2)(t2+4)(t+2)(t-2)
Step 3.1.2
Rewrite the expression.
t-2(t2+4)(t-2)
t-2(t2+4)(t-2)
Step 3.2
Cancel the common factor of t-2.
Tap for more steps...
Step 3.2.1
Cancel the common factor.
t-2(t2+4)(t-2)
Step 3.2.2
Rewrite the expression.
1t2+4
1t2+4
1t2+4
 [x2  12  π  xdx ]