Enter a problem...
Algebra Examples
t2+3t4-16+716-t4t2+3t4−16+716−t4
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Simplify the denominator.
Step 1.1.1.1
Rewrite t4t4 as (t2)2(t2)2.
t2+3(t2)2-16+716-t4t2+3(t2)2−16+716−t4
Step 1.1.1.2
Rewrite 1616 as 4242.
t2+3(t2)2-42+716-t4t2+3(t2)2−42+716−t4
Step 1.1.1.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=t2a=t2 and b=4b=4.
t2+3(t2+4)(t2-4)+716-t4t2+3(t2+4)(t2−4)+716−t4
Step 1.1.1.4
Simplify.
Step 1.1.1.4.1
Rewrite 44 as 2222.
t2+3(t2+4)(t2-22)+716-t4t2+3(t2+4)(t2−22)+716−t4
Step 1.1.1.4.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=ta=t and b=2b=2.
t2+3(t2+4)(t+2)(t-2)+716-t4t2+3(t2+4)(t+2)(t−2)+716−t4
t2+3(t2+4)(t+2)(t-2)+716-t4t2+3(t2+4)(t+2)(t−2)+716−t4
t2+3(t2+4)(t+2)(t-2)+716-t4t2+3(t2+4)(t+2)(t−2)+716−t4
Step 1.1.2
Simplify the denominator.
Step 1.1.2.1
Rewrite 1616 as 4242.
t2+3(t2+4)(t+2)(t-2)+742-t4t2+3(t2+4)(t+2)(t−2)+742−t4
Step 1.1.2.2
Rewrite t4t4 as (t2)2(t2)2.
t2+3(t2+4)(t+2)(t-2)+742-(t2)2t2+3(t2+4)(t+2)(t−2)+742−(t2)2
Step 1.1.2.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=4a=4 and b=t2b=t2.
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(4-t2)t2+3(t2+4)(t+2)(t−2)+7(4+t2)(4−t2)
Step 1.1.2.4
Simplify.
Step 1.1.2.4.1
Rewrite 44 as 2222.
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(22-t2)t2+3(t2+4)(t+2)(t−2)+7(4+t2)(22−t2)
Step 1.1.2.4.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=2a=2 and b=tb=t.
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(2+t)(2-t)t2+3(t2+4)(t+2)(t−2)+7(4+t2)(2+t)(2−t)
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(2+t)(2-t)t2+3(t2+4)(t+2)(t−2)+7(4+t2)(2+t)(2−t)
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(2+t)(2-t)t2+3(t2+4)(t+2)(t−2)+7(4+t2)(2+t)(2−t)
t2+3(t2+4)(t+2)(t-2)+7(4+t2)(2+t)(2-t)t2+3(t2+4)(t+2)(t−2)+7(4+t2)(2+t)(2−t)
Step 1.2
Simplify terms.
Step 1.2.1
Reorder terms.
t2+3(t2+4)(t+2)(t-2)+7(t2+4)(2+t)(2-t)t2+3(t2+4)(t+2)(t−2)+7(t2+4)(2+t)(2−t)
Step 1.2.2
Reorder terms.
t2+3(t2+4)(t+2)(t-2)+7(t2+4)(t+2)(2-t)t2+3(t2+4)(t+2)(t−2)+7(t2+4)(t+2)(2−t)
Step 1.2.3
Rewrite 22 as -1(-2)−1(−2).
t2+3(t2+4)(t+2)(t-2)+7(t2+4)(t+2)(-1(-2)-t)t2+3(t2+4)(t+2)(t−2)+7(t2+4)(t+2)(−1(−2)−t)
Step 1.2.4
Factor -1−1 out of -t−t.
t2+3(t2+4)(t+2)(t-2)+7(t2+4)(t+2)(-1(-2)-(t))t2+3(t2+4)(t+2)(t−2)+7(t2+4)(t+2)(−1(−2)−(t))
Step 1.2.5
Factor -1 out of -1(-2)-(t).
t2+3(t2+4)(t+2)(t-2)+7(t2+4)(t+2)(-1(-2+t))
Step 1.2.6
Simplify the expression.
Step 1.2.6.1
Move a negative from the denominator of 7(t2+4)(t+2)(-1(-2+t)) to the numerator.
t2+3(t2+4)(t+2)(t-2)+-1⋅7(t2+4)(t+2)(-2+t)
Step 1.2.6.2
Reorder terms.
t2+3(t2+4)(t+2)(t-2)+-1⋅7(t2+4)(t+2)(t-2)
t2+3(t2+4)(t+2)(t-2)+-1⋅7(t2+4)(t+2)(t-2)
Step 1.2.7
Combine the numerators over the common denominator.
t2+3-1⋅7(t2+4)(t+2)(t-2)
t2+3-1⋅7(t2+4)(t+2)(t-2)
t2+3-1⋅7(t2+4)(t+2)(t-2)
Step 2
Step 2.1
Multiply -1 by 7.
t2+3-7(t2+4)(t+2)(t-2)
Step 2.2
Subtract 7 from 3.
t2-4(t2+4)(t+2)(t-2)
Step 2.3
Rewrite t2-4 in a factored form.
Step 2.3.1
Rewrite 4 as 22.
t2-22(t2+4)(t+2)(t-2)
Step 2.3.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=t and b=2.
(t+2)(t-2)(t2+4)(t+2)(t-2)
(t+2)(t-2)(t2+4)(t+2)(t-2)
(t+2)(t-2)(t2+4)(t+2)(t-2)
Step 3
Step 3.1
Cancel the common factor of t+2.
Step 3.1.1
Cancel the common factor.
(t+2)(t-2)(t2+4)(t+2)(t-2)
Step 3.1.2
Rewrite the expression.
t-2(t2+4)(t-2)
t-2(t2+4)(t-2)
Step 3.2
Cancel the common factor of t-2.
Step 3.2.1
Cancel the common factor.
t-2(t2+4)(t-2)
Step 3.2.2
Rewrite the expression.
1t2+4
1t2+4
1t2+4