Enter a problem...
Algebra Examples
-1+9y>-73−1+9y>−73 and y-4-3>2y−4−3>2
Step 1
Step 1.1
Move all terms not containing yy to the right side of the inequality.
Step 1.1.1
Add 11 to both sides of the inequality.
9y>-73+19y>−73+1 and y-4-3>2y−4−3>2
Step 1.1.2
Add -73−73 and 11.
9y>-729y>−72 and y-4-3>2y−4−3>2
9y>-729y>−72 and y-4-3>2y−4−3>2
Step 1.2
Divide each term in 9y>-729y>−72 by 99 and simplify.
Step 1.2.1
Divide each term in 9y>-729y>−72 by 99.
9y9>-7299y9>−729 and y-4-3>2y−4−3>2
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of 99.
Step 1.2.2.1.1
Cancel the common factor.
9y9>-729 and y-4-3>2
Step 1.2.2.1.2
Divide y by 1.
y>-729 and y-4-3>2
y>-729 and y-4-3>2
y>-729 and y-4-3>2
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Divide -72 by 9.
y>-8 and y-4-3>2
y>-8 and y-4-3>2
y>-8 and y-4-3>2
y>-8 and y-4-3>2
Step 2
Step 2.1
Multiply both sides by -3.
y>-8 and y-4-3⋅-3<2⋅-3
Step 2.2
Simplify.
Step 2.2.1
Simplify the left side.
Step 2.2.1.1
Simplify y-4-3⋅-3.
Step 2.2.1.1.1
Simplify terms.
Step 2.2.1.1.1.1
Cancel the common factor of 3.
Step 2.2.1.1.1.1.1
Factor 3 out of -3.
y>-8 and y-43(-1)⋅-3<2⋅-3
Step 2.2.1.1.1.1.2
Factor 3 out of -3.
y>-8 and y-43⋅-1⋅(3⋅-1)<2⋅-3
Step 2.2.1.1.1.1.3
Cancel the common factor.
y>-8 and y-43⋅-1⋅(3⋅-1)<2⋅-3
Step 2.2.1.1.1.1.4
Rewrite the expression.
y>-8 and y-4-1⋅-1<2⋅-3
y>-8 and y-4-1⋅-1<2⋅-3
Step 2.2.1.1.1.2
Combine y-4-1 and -1.
y>-8 and (y-4)⋅-1-1<2⋅-3
Step 2.2.1.1.1.3
Simplify the expression.
Step 2.2.1.1.1.3.1
Move the negative one from the denominator of (y-4)⋅-1-1.
y>-8 and -1⋅((y-4)⋅-1)<2⋅-3
Step 2.2.1.1.1.3.2
Rewrite -1⋅((y-4)⋅-1) as -((y-4)⋅-1).
y>-8 and -((y-4)⋅-1)<2⋅-3
y>-8 and -((y-4)⋅-1)<2⋅-3
Step 2.2.1.1.1.4
Apply the distributive property.
y>-8 and -(y⋅-1-4⋅-1)<2⋅-3
Step 2.2.1.1.1.5
Simplify the expression.
Step 2.2.1.1.1.5.1
Move -1 to the left of y.
y>-8 and -(-1⋅y-4⋅-1)<2⋅-3
Step 2.2.1.1.1.5.2
Multiply -4 by -1.
y>-8 and -(-1⋅y+4)<2⋅-3
y>-8 and -(-1⋅y+4)<2⋅-3
y>-8 and -(-1⋅y+4)<2⋅-3
Step 2.2.1.1.2
Rewrite -1y as -y.
y>-8 and -(-y+4)<2⋅-3
Step 2.2.1.1.3
Apply the distributive property.
y>-8 and y-1⋅4<2⋅-3
Step 2.2.1.1.4
Multiply --y.
Step 2.2.1.1.4.1
Multiply -1 by -1.
y>-8 and 1y-1⋅4<2⋅-3
Step 2.2.1.1.4.2
Multiply y by 1.
y>-8 and y-1⋅4<2⋅-3
y>-8 and y-1⋅4<2⋅-3
Step 2.2.1.1.5
Multiply -1 by 4.
y>-8 and y-4<2⋅-3
y>-8 and y-4<2⋅-3
y>-8 and y-4<2⋅-3
Step 2.2.2
Simplify the right side.
Step 2.2.2.1
Multiply 2 by -3.
y>-8 and y-4<-6
y>-8 and y-4<-6
y>-8 and y-4<-6
Step 2.3
Move all terms not containing y to the right side of the inequality.
Step 2.3.1
Add 4 to both sides of the inequality.
y>-8 and y<-6+4
Step 2.3.2
Add -6 and 4.
y>-8 and y<-2
y>-8 and y<-2
y>-8 and y<-2
Step 3
The intersection consists of the elements that are contained in both intervals.
-8<y<-2
Step 4
The result can be shown in multiple forms.
Inequality Form:
-8<y<-2
Interval Notation:
(-8,-2)
Step 5