Algebra Examples

Solve for x x^2=(x+4)(x-4)+16
x2=(x+4)(x-4)+16
Step 1
Since x is on the right side of the equation, switch the sides so it is on the left side of the equation.
(x+4)(x-4)+16=x2
Step 2
Simplify (x+4)(x-4)+16.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Expand (x+4)(x-4) using the FOIL Method.
Tap for more steps...
Step 2.1.1.1
Apply the distributive property.
x(x-4)+4(x-4)+16=x2
Step 2.1.1.2
Apply the distributive property.
xx+x-4+4(x-4)+16=x2
Step 2.1.1.3
Apply the distributive property.
xx+x-4+4x+4-4+16=x2
xx+x-4+4x+4-4+16=x2
Step 2.1.2
Combine the opposite terms in xx+x-4+4x+4-4.
Tap for more steps...
Step 2.1.2.1
Reorder the factors in the terms x-4 and 4x.
xx-4x+4x+4-4+16=x2
Step 2.1.2.2
Add -4x and 4x.
xx+0+4-4+16=x2
Step 2.1.2.3
Add xx and 0.
xx+4-4+16=x2
xx+4-4+16=x2
Step 2.1.3
Simplify each term.
Tap for more steps...
Step 2.1.3.1
Multiply x by x.
x2+4-4+16=x2
Step 2.1.3.2
Multiply 4 by -4.
x2-16+16=x2
x2-16+16=x2
x2-16+16=x2
Step 2.2
Combine the opposite terms in x2-16+16.
Tap for more steps...
Step 2.2.1
Add -16 and 16.
x2+0=x2
Step 2.2.2
Add x2 and 0.
x2=x2
x2=x2
x2=x2
Step 3
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 3.1
Subtract x2 from both sides of the equation.
x2-x2=0
Step 3.2
Subtract x2 from x2.
0=0
0=0
Step 4
Since 0=0, the equation will always be true for any value of x.
All real numbers
Step 5
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-,)
 [x2  12  π  xdx ]