Algebra Examples

Determine if Dependent, Independent, or Inconsistent 4x=2y-6 y=2x+3
4x=2y-64x=2y6 y=2x+3
Step 1
Solve the system of equations.
Tap for more steps...
Step 1.1
Move all terms containing variables to the left.
Tap for more steps...
Step 1.1.1
Subtract 2y from both sides of the equation.
4x-2y=-6,y=2x+3
Step 1.1.2
Subtract 2x from both sides of the equation.
4x-2y=-6,y-2x=3
4x-2y=-6,y-2x=3
Step 1.2
Reorder the polynomial.
-2x+y=3
4x-2y=-6
Step 1.3
Multiply each equation by the value that makes the coefficients of y opposite.
4x-2y=-6
(2)(-2x+y)=(2)(3)
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Simplify the left side.
Tap for more steps...
Step 1.4.1.1
Simplify (2)(-2x+y).
Tap for more steps...
Step 1.4.1.1.1
Apply the distributive property.
4x-2y=-6
2(-2x)+2y=(2)(3)
Step 1.4.1.1.2
Multiply -2 by 2.
4x-2y=-6
-4x+2y=(2)(3)
4x-2y=-6
-4x+2y=(2)(3)
4x-2y=-6
-4x+2y=(2)(3)
Step 1.4.2
Simplify the right side.
Tap for more steps...
Step 1.4.2.1
Multiply 2 by 3.
4x-2y=-6
-4x+2y=6
4x-2y=-6
-4x+2y=6
4x-2y=-6
-4x+2y=6
Step 1.5
Add the two equations together to eliminate y from the system.
4x-2y=-6
+-4x+2y=6
0=0
Step 1.6
Since 0=0, the equations intersect at an infinite number of points.
Infinite number of solutions
Step 1.7
Solve one of the equations for y.
Tap for more steps...
Step 1.7.1
Subtract 4x from both sides of the equation.
-2y=-6-4x
Step 1.7.2
Divide each term in -2y=-6-4x by -2 and simplify.
Tap for more steps...
Step 1.7.2.1
Divide each term in -2y=-6-4x by -2.
-2y-2=-6-2+-4x-2
Step 1.7.2.2
Simplify the left side.
Tap for more steps...
Step 1.7.2.2.1
Cancel the common factor of -2.
Tap for more steps...
Step 1.7.2.2.1.1
Cancel the common factor.
-2y-2=-6-2+-4x-2
Step 1.7.2.2.1.2
Divide y by 1.
y=-6-2+-4x-2
y=-6-2+-4x-2
y=-6-2+-4x-2
Step 1.7.2.3
Simplify the right side.
Tap for more steps...
Step 1.7.2.3.1
Simplify each term.
Tap for more steps...
Step 1.7.2.3.1.1
Divide -6 by -2.
y=3+-4x-2
Step 1.7.2.3.1.2
Cancel the common factor of -4 and -2.
Tap for more steps...
Step 1.7.2.3.1.2.1
Factor -2 out of -4x.
y=3+-2(2x)-2
Step 1.7.2.3.1.2.2
Cancel the common factors.
Tap for more steps...
Step 1.7.2.3.1.2.2.1
Factor -2 out of -2.
y=3+-2(2x)-2(1)
Step 1.7.2.3.1.2.2.2
Cancel the common factor.
y=3+-2(2x)-21
Step 1.7.2.3.1.2.2.3
Rewrite the expression.
y=3+2x1
Step 1.7.2.3.1.2.2.4
Divide 2x by 1.
y=3+2x
y=3+2x
y=3+2x
y=3+2x
y=3+2x
y=3+2x
y=3+2x
Step 1.8
The solution is the set of ordered pairs that make y=3+2x true.
(x,3+2x)
(x,3+2x)
Step 2
Since the system is always true, the equations are equal and the graphs are the same line. Thus, the system is dependent.
Dependent
Step 3
 [x2  12  π  xdx ]