Enter a problem...
Algebra Examples
4x=2y-64x=2y−6 y=2x+3
Step 1
Step 1.1
Move all terms containing variables to the left.
Step 1.1.1
Subtract 2y from both sides of the equation.
4x-2y=-6,y=2x+3
Step 1.1.2
Subtract 2x from both sides of the equation.
4x-2y=-6,y-2x=3
4x-2y=-6,y-2x=3
Step 1.2
Reorder the polynomial.
-2x+y=3
4x-2y=-6
Step 1.3
Multiply each equation by the value that makes the coefficients of y opposite.
4x-2y=-6
(2)⋅(-2x+y)=(2)(3)
Step 1.4
Simplify.
Step 1.4.1
Simplify the left side.
Step 1.4.1.1
Simplify (2)⋅(-2x+y).
Step 1.4.1.1.1
Apply the distributive property.
4x-2y=-6
2(-2x)+2y=(2)(3)
Step 1.4.1.1.2
Multiply -2 by 2.
4x-2y=-6
-4x+2y=(2)(3)
4x-2y=-6
-4x+2y=(2)(3)
4x-2y=-6
-4x+2y=(2)(3)
Step 1.4.2
Simplify the right side.
Step 1.4.2.1
Multiply 2 by 3.
4x-2y=-6
-4x+2y=6
4x-2y=-6
-4x+2y=6
4x-2y=-6
-4x+2y=6
Step 1.5
Add the two equations together to eliminate y from the system.
4 | x | - | 2 | y | = | - | 6 | ||||
+ | - | 4 | x | + | 2 | y | = | 6 | |||
0 | = | 0 |
Step 1.6
Since 0=0, the equations intersect at an infinite number of points.
Infinite number of solutions
Step 1.7
Solve one of the equations for y.
Step 1.7.1
Subtract 4x from both sides of the equation.
-2y=-6-4x
Step 1.7.2
Divide each term in -2y=-6-4x by -2 and simplify.
Step 1.7.2.1
Divide each term in -2y=-6-4x by -2.
-2y-2=-6-2+-4x-2
Step 1.7.2.2
Simplify the left side.
Step 1.7.2.2.1
Cancel the common factor of -2.
Step 1.7.2.2.1.1
Cancel the common factor.
-2y-2=-6-2+-4x-2
Step 1.7.2.2.1.2
Divide y by 1.
y=-6-2+-4x-2
y=-6-2+-4x-2
y=-6-2+-4x-2
Step 1.7.2.3
Simplify the right side.
Step 1.7.2.3.1
Simplify each term.
Step 1.7.2.3.1.1
Divide -6 by -2.
y=3+-4x-2
Step 1.7.2.3.1.2
Cancel the common factor of -4 and -2.
Step 1.7.2.3.1.2.1
Factor -2 out of -4x.
y=3+-2(2x)-2
Step 1.7.2.3.1.2.2
Cancel the common factors.
Step 1.7.2.3.1.2.2.1
Factor -2 out of -2.
y=3+-2(2x)-2(1)
Step 1.7.2.3.1.2.2.2
Cancel the common factor.
y=3+-2(2x)-2⋅1
Step 1.7.2.3.1.2.2.3
Rewrite the expression.
y=3+2x1
Step 1.7.2.3.1.2.2.4
Divide 2x by 1.
y=3+2x
y=3+2x
y=3+2x
y=3+2x
y=3+2x
y=3+2x
y=3+2x
Step 1.8
The solution is the set of ordered pairs that make y=3+2x true.
(x,3+2x)
(x,3+2x)
Step 2
Since the system is always true, the equations are equal and the graphs are the same line. Thus, the system is dependent.
Dependent
Step 3