Enter a problem...
Algebra Examples
g(x)=-12f(x)g(x)=−12f(x)
Step 1
The parent function is the simplest form of the type of function given.
f(x)=-12⋅f(x)f(x)=−12⋅f(x)
Step 2
Step 2.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 2.2
Using the slope-intercept form, find the y-intercept for f(x)=-12⋅f(x)f(x)=−12⋅f(x).
b1=0b1=0
Step 2.3
Using the slope-intercept form, find the y-intercept for g(x)=-12⋅f(x)g(x)=−12⋅f(x).
b2=0b2=0
Step 2.4
List the y-intercepts.
b1=0b1=0
b2=0b2=0
b1=0b1=0
b2=0b2=0
Step 3
The vertical shift depends on the y-intercept value bb, where b=b2-b1b=b2−b1
b2-b1=0b2−b1=0
Step 4
Since b=0b=0, the graph is not shifted.
Not Shifted
Step 5
Step 5.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 5.2
Using the slope-intercept form, find the slope for f(x)=-12⋅f(x)f(x)=−12⋅f(x).
m1=-12m1=−12
Step 5.3
Using the slope-intercept form, find the slope for g(x)=-12⋅f(x)g(x)=−12⋅f(x).
m2=-12m2=−12
Step 5.4
List the slopes.
m1=-12m1=−12
m2=-12m2=−12
m1=-12m1=−12
m2=-12m2=−12
Step 6
The vertical stretch depends on the slope.
If |m2|<|m1||m2|<|m1|, vertical compression
If |m2|>|m1||m2|>|m1|, vertical stretch
If |m2|=|m1||m2|=|m1|, no vertical stretch or compression.
Step 7
Since |m2|=|m1||m2|=|m1|, there is no vertical stretch or compression.
No vertical stretch or compression
Step 8
Since m1m1 and m2m2 do not have opposite signs, the graph is not reflected about the y-axis.
Not reflected about the y-axis
Step 9
Describe the transformation from the function f(x)=-12⋅f(x)f(x)=−12⋅f(x).
No transformation
Step 10