Enter a problem...
Algebra Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Dividing two negative values results in a positive value.
Step 1.2.2.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Divide by .
Step 1.2.3.1.2
Dividing two negative values results in a positive value.
Step 1.2.3.1.3
Divide by .
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply by .
Step 2.2.1.1.3.1.2
Rewrite as .
Step 2.2.1.1.3.1.3
Move to the left of .
Step 2.2.1.1.3.1.4
Rewrite as .
Step 2.2.1.1.3.1.5
Multiply by by adding the exponents.
Step 2.2.1.1.3.1.5.1
Use the power rule to combine exponents.
Step 2.2.1.1.3.1.5.2
Add and .
Step 2.2.1.1.3.2
Subtract from .
Step 2.2.1.2
Combine the opposite terms in .
Step 2.2.1.2.1
Subtract from .
Step 2.2.1.2.2
Add and .
Step 3
Step 3.1
Move all terms not containing to the right side of the equation.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.3
Simplify .
Step 3.3.1
Rewrite as .
Step 3.3.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.4.1
First, use the positive value of the to find the first solution.
Step 3.4.2
Next, use the negative value of the to find the second solution.
Step 3.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Raise to the power of .
Step 4.2.1.2
Add and .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Raise to the power of .
Step 5.2.1.2
Add and .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8