Enter a problem...
Algebra Examples
Step 1
Step 1.1
Use the product property of logarithms, .
Step 1.2
Apply the distributive property.
Step 1.3
Multiply.
Step 1.3.1
Multiply by .
Step 1.3.2
Multiply by .
Step 2
Move all the terms containing a logarithm to the left side of the equation.
Step 3
Use the quotient property of logarithms, .
Step 4
Step 4.1
Factor out of .
Step 4.2
Factor out of .
Step 4.3
Factor out of .
Step 5
To solve for , rewrite the equation using properties of logarithms.
Step 6
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 7
Step 7.1
Rewrite the equation as .
Step 7.2
Multiply both sides by .
Step 7.3
Simplify.
Step 7.3.1
Simplify the left side.
Step 7.3.1.1
Simplify .
Step 7.3.1.1.1
Rewrite using the commutative property of multiplication.
Step 7.3.1.1.2
Cancel the common factor of .
Step 7.3.1.1.2.1
Factor out of .
Step 7.3.1.1.2.2
Cancel the common factor.
Step 7.3.1.1.2.3
Rewrite the expression.
Step 7.3.1.1.3
Cancel the common factor of .
Step 7.3.1.1.3.1
Cancel the common factor.
Step 7.3.1.1.3.2
Rewrite the expression.
Step 7.3.1.1.4
Apply the distributive property.
Step 7.3.1.1.5
Multiply.
Step 7.3.1.1.5.1
Multiply by .
Step 7.3.1.1.5.2
Multiply by .
Step 7.3.2
Simplify the right side.
Step 7.3.2.1
Simplify .
Step 7.3.2.1.1
Rewrite using the commutative property of multiplication.
Step 7.3.2.1.2
Reorder factors in .
Step 7.4
Solve for .
Step 7.4.1
Add to both sides of the equation.
Step 7.4.2
Divide each term in by and simplify.
Step 7.4.2.1
Divide each term in by .
Step 7.4.2.2
Simplify the left side.
Step 7.4.2.2.1
Cancel the common factor of .
Step 7.4.2.2.1.1
Cancel the common factor.
Step 7.4.2.2.1.2
Divide by .
Step 7.4.2.3
Simplify the right side.
Step 7.4.2.3.1
Cancel the common factor of and .
Step 7.4.2.3.1.1
Factor out of .
Step 7.4.2.3.1.2
Cancel the common factors.
Step 7.4.2.3.1.2.1
Factor out of .
Step 7.4.2.3.1.2.2
Cancel the common factor.
Step 7.4.2.3.1.2.3
Rewrite the expression.