Algebra Examples

Evaluate 1/2 log base 5 of 15- log base 5 of square root of 75
12log5(15)-log5(75)12log5(15)log5(75)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Simplify 12log5(15) by moving 12 inside the logarithm.
log5(1512)-log5(75)
Step 1.2
Rewrite 75 as 523.
Tap for more steps...
Step 1.2.1
Factor 25 out of 75.
log5(1512)-log5(25(3))
Step 1.2.2
Rewrite 25 as 52.
log5(1512)-log5(523)
log5(1512)-log5(523)
Step 1.3
Pull terms out from under the radical.
log5(1512)-log5(53)
log5(1512)-log5(53)
Step 2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
log5(151253)
Step 3
Multiply 151253 by 33.
log5(15125333)
Step 4
Combine and simplify the denominator.
Tap for more steps...
Step 4.1
Multiply 151253 by 33.
log5(15123533)
Step 4.2
Move 3.
log5(151235(33))
Step 4.3
Raise 3 to the power of 1.
log5(151235(313))
Step 4.4
Raise 3 to the power of 1.
log5(151235(3131))
Step 4.5
Use the power rule aman=am+n to combine exponents.
log5(15123531+1)
Step 4.6
Add 1 and 1.
log5(15123532)
Step 4.7
Rewrite 32 as 3.
Tap for more steps...
Step 4.7.1
Use nax=axn to rewrite 3 as 312.
log5(151235(312)2)
Step 4.7.2
Apply the power rule and multiply exponents, (am)n=amn.
log5(1512353122)
Step 4.7.3
Combine 12 and 2.
log5(151235322)
Step 4.7.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.7.4.1
Cancel the common factor.
log5(151235322)
Step 4.7.4.2
Rewrite the expression.
log5(15123531)
log5(15123531)
Step 4.7.5
Evaluate the exponent.
log5(1512353)
log5(1512353)
log5(1512353)
Step 5
Multiply.
Tap for more steps...
Step 5.1
Multiply 5 by 3.
log5(1512315)
Step 5.2
Move 1512 to the denominator using the negative exponent rule bn=1b-n.
log5(31515-12)
log5(31515-12)
Step 6
Multiply 15 by 15-12 by adding the exponents.
Tap for more steps...
Step 6.1
Multiply 15 by 15-12.
Tap for more steps...
Step 6.1.1
Raise 15 to the power of 1.
log5(315115-12)
Step 6.1.2
Use the power rule aman=am+n to combine exponents.
log5(3151-12)
log5(3151-12)
Step 6.2
Write 1 as a fraction with a common denominator.
log5(31522-12)
Step 6.3
Combine the numerators over the common denominator.
log5(3152-12)
Step 6.4
Subtract 1 from 2.
log5(31512)
log5(31512)
Step 7
Rewrite log5(31512) using the change of base formula.
Tap for more steps...
Step 7.1
The change of base rule can be used if a and b are greater than 0 and not equal to 1, and x is greater than 0.
loga(x)=logb(x)logb(a)
Step 7.2
Substitute in values for the variables in the change of base formula, using b=10.
log(31512)log(5)
log(31512)log(5)
Step 8
The result can be shown in multiple forms.
Exact Form:
log(31512)log(5)
Decimal Form:
-0.5
 [x2  12  π  xdx ]