Enter a problem...
Algebra Examples
12log5(15)-log5(√75)12log5(15)−log5(√75)
Step 1
Step 1.1
Simplify 12log5(15) by moving 12 inside the logarithm.
log5(1512)-log5(√75)
Step 1.2
Rewrite 75 as 52⋅3.
Step 1.2.1
Factor 25 out of 75.
log5(1512)-log5(√25(3))
Step 1.2.2
Rewrite 25 as 52.
log5(1512)-log5(√52⋅3)
log5(1512)-log5(√52⋅3)
Step 1.3
Pull terms out from under the radical.
log5(1512)-log5(5√3)
log5(1512)-log5(5√3)
Step 2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
log5(15125√3)
Step 3
Multiply 15125√3 by √3√3.
log5(15125√3⋅√3√3)
Step 4
Step 4.1
Multiply 15125√3 by √3√3.
log5(1512√35√3√3)
Step 4.2
Move √3.
log5(1512√35(√3√3))
Step 4.3
Raise √3 to the power of 1.
log5(1512√35(√31√3))
Step 4.4
Raise √3 to the power of 1.
log5(1512√35(√31√31))
Step 4.5
Use the power rule aman=am+n to combine exponents.
log5(1512√35√31+1)
Step 4.6
Add 1 and 1.
log5(1512√35√32)
Step 4.7
Rewrite √32 as 3.
Step 4.7.1
Use n√ax=axn to rewrite √3 as 312.
log5(1512√35(312)2)
Step 4.7.2
Apply the power rule and multiply exponents, (am)n=amn.
log5(1512√35⋅312⋅2)
Step 4.7.3
Combine 12 and 2.
log5(1512√35⋅322)
Step 4.7.4
Cancel the common factor of 2.
Step 4.7.4.1
Cancel the common factor.
log5(1512√35⋅322)
Step 4.7.4.2
Rewrite the expression.
log5(1512√35⋅31)
log5(1512√35⋅31)
Step 4.7.5
Evaluate the exponent.
log5(1512√35⋅3)
log5(1512√35⋅3)
log5(1512√35⋅3)
Step 5
Step 5.1
Multiply 5 by 3.
log5(1512√315)
Step 5.2
Move 1512 to the denominator using the negative exponent rule bn=1b-n.
log5(√315⋅15-12)
log5(√315⋅15-12)
Step 6
Step 6.1
Multiply 15 by 15-12.
Step 6.1.1
Raise 15 to the power of 1.
log5(√3151⋅15-12)
Step 6.1.2
Use the power rule aman=am+n to combine exponents.
log5(√3151-12)
log5(√3151-12)
Step 6.2
Write 1 as a fraction with a common denominator.
log5(√31522-12)
Step 6.3
Combine the numerators over the common denominator.
log5(√3152-12)
Step 6.4
Subtract 1 from 2.
log5(√31512)
log5(√31512)
Step 7
Step 7.1
The change of base rule can be used if a and b are greater than 0 and not equal to 1, and x is greater than 0.
loga(x)=logb(x)logb(a)
Step 7.2
Substitute in values for the variables in the change of base formula, using b=10.
log(√31512)log(5)
log(√31512)log(5)
Step 8
The result can be shown in multiple forms.
Exact Form:
log(√31512)log(5)
Decimal Form:
-0.5