Enter a problem...
Algebra Examples
(2x3+1)5(2x3+1)5
Step 1
Pascal's Triangle can be displayed as such:
11
1-11−1
1-2-11−2−1
1-3-3-11−3−3−1
1-4-6-4-11−4−6−4−1
1-5-10-10-5-11−5−10−10−5−1
The triangle can be used to calculate the coefficients of the expansion of (a+b)n(a+b)n by taking the exponent nn and adding 11. The coefficients will correspond with line n+1n+1 of the triangle. For (2x3+1)5(2x3+1)5, n=5n=5 so the coefficients of the expansion will correspond with line 66.
Step 2
The expansion follows the rule (a+b)n=c0anb0+c1an-1b1+cn-1a1bn-1+cna0bn(a+b)n=c0anb0+c1an−1b1+cn−1a1bn−1+cna0bn. The values of the coefficients, from the triangle, are 1-5-10-10-5-11−5−10−10−5−1.
1a5b0+5a4b+10a3b2+10a2b3+5ab4+1a0b51a5b0+5a4b+10a3b2+10a2b3+5ab4+1a0b5
Step 3
Substitute the actual values of aa 2x32x3 and bb 11 into the expression.
1(2x3)5(1)0+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)51(2x3)5(1)0+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4
Step 4.1
Multiply 11 by (1)0(1)0 by adding the exponents.
Step 4.1.1
Move (1)0(1)0.
(1)0⋅1(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5(1)0⋅1(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.1.2
Multiply (1)0(1)0 by 11.
Step 4.1.2.1
Raise 11 to the power of 11.
(1)0⋅11(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5(1)0⋅11(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.1.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
10+1(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)510+1(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
10+1(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)510+1(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.1.3
Add 00 and 11.
11(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)511(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
11(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)511(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.2
Simplify 11(2x3)511(2x3)5.
(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5(2x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.3
Apply the product rule to 2x32x3.
25(x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)525(x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.4
Raise 22 to the power of 55.
32(x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)532(x3)5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.5
Multiply the exponents in (x3)5(x3)5.
Step 4.5.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
32x3⋅5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)532x3⋅5+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.5.2
Multiply 33 by 55.
32x15+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)532x15+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
32x15+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)532x15+5(2x3)4(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.6
Apply the product rule to 2x32x3.
32x15+5(24(x3)4)(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)532x15+5(24(x3)4)(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.7
Raise 22 to the power of 44.
32x15+5(16(x3)4)(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)532x15+5(16(x3)4)(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.8
Multiply the exponents in (x3)4(x3)4.
Step 4.8.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
32x15+5(16x3⋅4)(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)532x15+5(16x3⋅4)(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.8.2
Multiply 33 by 44.
32x15+5(16x12)(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)532x15+5(16x12)(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
32x15+5(16x12)(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)532x15+5(16x12)(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.9
Multiply 1616 by 55.
32x15+80x12(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)532x15+80x12(1)1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.10
Evaluate the exponent.
32x15+80x12⋅1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)532x15+80x12⋅1+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.11
Multiply 80 by 1.
32x15+80x12+10(2x3)3(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.12
Apply the product rule to 2x3.
32x15+80x12+10(23(x3)3)(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.13
Raise 2 to the power of 3.
32x15+80x12+10(8(x3)3)(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.14
Multiply the exponents in (x3)3.
Step 4.14.1
Apply the power rule and multiply exponents, (am)n=amn.
32x15+80x12+10(8x3⋅3)(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.14.2
Multiply 3 by 3.
32x15+80x12+10(8x9)(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
32x15+80x12+10(8x9)(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.15
Multiply 8 by 10.
32x15+80x12+80x9(1)2+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.16
One to any power is one.
32x15+80x12+80x9⋅1+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.17
Multiply 80 by 1.
32x15+80x12+80x9+10(2x3)2(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.18
Apply the product rule to 2x3.
32x15+80x12+80x9+10(22(x3)2)(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.19
Raise 2 to the power of 2.
32x15+80x12+80x9+10(4(x3)2)(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.20
Multiply the exponents in (x3)2.
Step 4.20.1
Apply the power rule and multiply exponents, (am)n=amn.
32x15+80x12+80x9+10(4x3⋅2)(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.20.2
Multiply 3 by 2.
32x15+80x12+80x9+10(4x6)(1)3+5(2x3)1(1)4+1(2x3)0(1)5
32x15+80x12+80x9+10(4x6)(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.21
Multiply 4 by 10.
32x15+80x12+80x9+40x6(1)3+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.22
One to any power is one.
32x15+80x12+80x9+40x6⋅1+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.23
Multiply 40 by 1.
32x15+80x12+80x9+40x6+5(2x3)1(1)4+1(2x3)0(1)5
Step 4.24
Simplify.
32x15+80x12+80x9+40x6+5(2x3)(1)4+1(2x3)0(1)5
Step 4.25
Multiply 2 by 5.
32x15+80x12+80x9+40x6+10x3(1)4+1(2x3)0(1)5
Step 4.26
One to any power is one.
32x15+80x12+80x9+40x6+10x3⋅1+1(2x3)0(1)5
Step 4.27
Multiply 10 by 1.
32x15+80x12+80x9+40x6+10x3+1(2x3)0(1)5
Step 4.28
Multiply 1 by (1)5 by adding the exponents.
Step 4.28.1
Move (1)5.
32x15+80x12+80x9+40x6+10x3+(1)5⋅1(2x3)0
Step 4.28.2
Multiply (1)5 by 1.
Step 4.28.2.1
Raise 1 to the power of 1.
32x15+80x12+80x9+40x6+10x3+(1)5⋅11(2x3)0
Step 4.28.2.2
Use the power rule aman=am+n to combine exponents.
32x15+80x12+80x9+40x6+10x3+15+1(2x3)0
32x15+80x12+80x9+40x6+10x3+15+1(2x3)0
Step 4.28.3
Add 5 and 1.
32x15+80x12+80x9+40x6+10x3+16(2x3)0
32x15+80x12+80x9+40x6+10x3+16(2x3)0
Step 4.29
Simplify 16(2x3)0.
32x15+80x12+80x9+40x6+10x3+16
Step 4.30
One to any power is one.
32x15+80x12+80x9+40x6+10x3+1
32x15+80x12+80x9+40x6+10x3+1