Enter a problem...
Algebra Examples
Step 1
Find all the values where the expression switches from negative to positive by setting each factor equal to and solving.
Step 2
Step 2.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.2
Write the factored form using these integers.
Step 3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4
Step 4.1
Set equal to .
Step 4.2
Add to both sides of the equation.
Step 5
Step 5.1
Set equal to .
Step 5.2
Subtract from both sides of the equation.
Step 6
The final solution is all the values that make true.
Step 7
Add to both sides of the equation.
Step 8
Solve for each factor to find the values where the absolute value expression goes from negative to positive.
Step 9
Consolidate the solutions.
Step 10
Step 10.1
Set the denominator in equal to to find where the expression is undefined.
Step 10.2
Add to both sides of the equation.
Step 10.3
The domain is all values of that make the expression defined.
Step 11
Use each root to create test intervals.
Step 12
Step 12.1
Test a value on the interval to see if it makes the inequality true.
Step 12.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.1.2
Replace with in the original inequality.
Step 12.1.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 12.2
Test a value on the interval to see if it makes the inequality true.
Step 12.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.2.2
Replace with in the original inequality.
Step 12.2.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 12.3
Test a value on the interval to see if it makes the inequality true.
Step 12.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.3.2
Replace with in the original inequality.
Step 12.3.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 12.4
Test a value on the interval to see if it makes the inequality true.
Step 12.4.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.4.2
Replace with in the original inequality.
Step 12.4.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 12.5
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
True
False
True
False
True
Step 13
The solution consists of all of the true intervals.
or
Step 14
The result can be shown in multiple forms.
Inequality Form:
Interval Notation:
Step 15