Algebra Examples

Solve for θ sin(theta)^2=1
Step 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2
Any root of is .
Step 3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.1
First, use the positive value of the to find the first solution.
Step 3.2
Next, use the negative value of the to find the second solution.
Step 3.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Set up each of the solutions to solve for .
Step 5
Solve for in .
Tap for more steps...
Step 5.1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 5.2
Simplify the right side.
Tap for more steps...
Step 5.2.1
The exact value of is .
Step 5.3
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 5.4
Simplify .
Tap for more steps...
Step 5.4.1
To write as a fraction with a common denominator, multiply by .
Step 5.4.2
Combine fractions.
Tap for more steps...
Step 5.4.2.1
Combine and .
Step 5.4.2.2
Combine the numerators over the common denominator.
Step 5.4.3
Simplify the numerator.
Tap for more steps...
Step 5.4.3.1
Move to the left of .
Step 5.4.3.2
Subtract from .
Step 5.5
Find the period of .
Tap for more steps...
Step 5.5.1
The period of the function can be calculated using .
Step 5.5.2
Replace with in the formula for period.
Step 5.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 5.5.4
Divide by .
Step 5.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 6
Solve for in .
Tap for more steps...
Step 6.1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 6.2
Simplify the right side.
Tap for more steps...
Step 6.2.1
The exact value of is .
Step 6.3
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Step 6.4
Simplify the expression to find the second solution.
Tap for more steps...
Step 6.4.1
Subtract from .
Step 6.4.2
The resulting angle of is positive, less than , and coterminal with .
Step 6.5
Find the period of .
Tap for more steps...
Step 6.5.1
The period of the function can be calculated using .
Step 6.5.2
Replace with in the formula for period.
Step 6.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 6.5.4
Divide by .
Step 6.6
Add to every negative angle to get positive angles.
Tap for more steps...
Step 6.6.1
Add to to find the positive angle.
Step 6.6.2
To write as a fraction with a common denominator, multiply by .
Step 6.6.3
Combine fractions.
Tap for more steps...
Step 6.6.3.1
Combine and .
Step 6.6.3.2
Combine the numerators over the common denominator.
Step 6.6.4
Simplify the numerator.
Tap for more steps...
Step 6.6.4.1
Multiply by .
Step 6.6.4.2
Subtract from .
Step 6.6.5
List the new angles.
Step 6.7
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 7
List all of the solutions.
, for any integer
Step 8
Consolidate the answers.
, for any integer