Algebra Examples

Convert to Interval Notation a/-2<-1 or -4a+3>=23
a-2<-1 or -4a+323
Step 1
Simplify the first inequality.
Tap for more steps...
Step 1.1
Multiply both sides by -2.
a-2-2>2 or -4a+323
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Simplify the left side.
Tap for more steps...
Step 1.2.1.1
Simplify a-2-2.
Tap for more steps...
Step 1.2.1.1.1
Cancel the common factor of 2.
Tap for more steps...
Step 1.2.1.1.1.1
Factor 2 out of -2.
a2(-1)-2>2 or -4a+323
Step 1.2.1.1.1.2
Factor 2 out of -2.
a2-1(2-1)>2 or -4a+323
Step 1.2.1.1.1.3
Cancel the common factor.
a2-1(2-1)>2 or -4a+323
Step 1.2.1.1.1.4
Rewrite the expression.
a-1-1>2 or -4a+323
a-1-1>2 or -4a+323
Step 1.2.1.1.2
Combine a-1 and -1.
a-1-1>2 or -4a+323
Step 1.2.1.1.3
Simplify the expression.
Tap for more steps...
Step 1.2.1.1.3.1
Move the negative one from the denominator of a-1-1.
-1(a-1)>2 or -4a+323
Step 1.2.1.1.3.2
Rewrite -1(a-1) as -(a-1).
-(a-1)>2 or -4a+323
Step 1.2.1.1.3.3
Move -1 to the left of a.
-(-1a)>2 or -4a+323
Step 1.2.1.1.3.4
Rewrite -1a as -a.
a>2 or -4a+323
a>2 or -4a+323
Step 1.2.1.1.4
Multiply --a.
Tap for more steps...
Step 1.2.1.1.4.1
Multiply -1 by -1.
1a>2 or -4a+323
Step 1.2.1.1.4.2
Multiply a by 1.
a>2 or -4a+323
a>2 or -4a+323
a>2 or -4a+323
a>2 or -4a+323
Step 1.2.2
Simplify the right side.
Tap for more steps...
Step 1.2.2.1
Multiply -1 by -2.
a>2 or -4a+323
a>2 or -4a+323
a>2 or -4a+323
a>2 or -4a+323
Step 2
Simplify the second inequality.
Tap for more steps...
Step 2.1
Move all terms not containing a to the right side of the inequality.
Tap for more steps...
Step 2.1.1
Subtract 3 from both sides of the inequality.
a>2 or -4a23-3
Step 2.1.2
Subtract 3 from 23.
a>2 or -4a20
a>2 or -4a20
Step 2.2
Divide each term in -4a20 by -4 and simplify.
Tap for more steps...
Step 2.2.1
Divide each term in -4a20 by -4. When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
a>2 or -4a-420-4
Step 2.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.2.1
Cancel the common factor of -4.
Tap for more steps...
Step 2.2.2.1.1
Cancel the common factor.
a>2 or -4a-420-4
Step 2.2.2.1.2
Divide a by 1.
a>2 or a20-4
a>2 or a20-4
a>2 or a20-4
Step 2.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.3.1
Divide 20 by -4.
a>2 or a-5
a>2 or a-5
a>2 or a-5
a>2 or a-5
Step 3
The union consists of all of the elements that are contained in each interval.
a-5 or a>2
Step 4
Convert the inequality to interval notation.
(-,-5](2,)
Step 5
 [x2  12  π  xdx ]