Enter a problem...
Algebra Examples
y=4(x-1)2-4y=4(x−1)2−4
Step 1
Set 4(x-1)2-44(x−1)2−4 equal to 00.
4(x-1)2-4=04(x−1)2−4=0
Step 2
Step 2.1
Simplify 4(x-1)2-44(x−1)2−4.
Step 2.1.1
Simplify each term.
Step 2.1.1.1
Rewrite (x-1)2(x−1)2 as (x-1)(x-1)(x−1)(x−1).
4((x-1)(x-1))-4=04((x−1)(x−1))−4=0
Step 2.1.1.2
Expand (x-1)(x-1)(x−1)(x−1) using the FOIL Method.
Step 2.1.1.2.1
Apply the distributive property.
4(x(x-1)-1(x-1))-4=04(x(x−1)−1(x−1))−4=0
Step 2.1.1.2.2
Apply the distributive property.
4(x⋅x+x⋅-1-1(x-1))-4=04(x⋅x+x⋅−1−1(x−1))−4=0
Step 2.1.1.2.3
Apply the distributive property.
4(x⋅x+x⋅-1-1x-1⋅-1)-4=04(x⋅x+x⋅−1−1x−1⋅−1)−4=0
4(x⋅x+x⋅-1-1x-1⋅-1)-4=04(x⋅x+x⋅−1−1x−1⋅−1)−4=0
Step 2.1.1.3
Simplify and combine like terms.
Step 2.1.1.3.1
Simplify each term.
Step 2.1.1.3.1.1
Multiply xx by xx.
4(x2+x⋅-1-1x-1⋅-1)-4=04(x2+x⋅−1−1x−1⋅−1)−4=0
Step 2.1.1.3.1.2
Move -1−1 to the left of xx.
4(x2-1⋅x-1x-1⋅-1)-4=04(x2−1⋅x−1x−1⋅−1)−4=0
Step 2.1.1.3.1.3
Rewrite -1x−1x as -x−x.
4(x2-x-1x-1⋅-1)-4=04(x2−x−1x−1⋅−1)−4=0
Step 2.1.1.3.1.4
Rewrite -1x−1x as -x−x.
4(x2-x-x-1⋅-1)-4=04(x2−x−x−1⋅−1)−4=0
Step 2.1.1.3.1.5
Multiply -1−1 by -1−1.
4(x2-x-x+1)-4=04(x2−x−x+1)−4=0
4(x2-x-x+1)-4=04(x2−x−x+1)−4=0
Step 2.1.1.3.2
Subtract xx from -x−x.
4(x2-2x+1)-4=04(x2−2x+1)−4=0
4(x2-2x+1)-4=04(x2−2x+1)−4=0
Step 2.1.1.4
Apply the distributive property.
4x2+4(-2x)+4⋅1-4=04x2+4(−2x)+4⋅1−4=0
Step 2.1.1.5
Simplify.
Step 2.1.1.5.1
Multiply -2−2 by 44.
4x2-8x+4⋅1-4=04x2−8x+4⋅1−4=0
Step 2.1.1.5.2
Multiply 44 by 11.
4x2-8x+4-4=04x2−8x+4−4=0
4x2-8x+4-4=04x2−8x+4−4=0
4x2-8x+4-4=04x2−8x+4−4=0
Step 2.1.2
Combine the opposite terms in 4x2-8x+4-44x2−8x+4−4.
Step 2.1.2.1
Subtract 44 from 44.
4x2-8x+0=04x2−8x+0=0
Step 2.1.2.2
Add 4x2-8x4x2−8x and 00.
4x2-8x=04x2−8x=0
4x2-8x=04x2−8x=0
4x2-8x=04x2−8x=0
Step 2.2
Graph each side of the equation. The solution is the x-value of the point of intersection.
x=0,2x=0,2
x=0,2x=0,2
Step 3