Enter a problem...
Algebra Examples
Step 1
Step 1.1
Factor using the AC method.
Step 1.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.1.2
Write the factored form using these integers.
Step 1.2
Factor out of .
Step 1.2.1
Factor out of .
Step 1.2.2
Factor out of .
Step 1.2.3
Factor out of .
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.3
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.4
Since has no factors besides and .
is a prime number
Step 2.5
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 2.6
The factor for is itself.
occurs time.
Step 2.7
The factor for is itself.
occurs time.
Step 2.8
The factor for is itself.
occurs time.
Step 2.9
The factor for is itself.
occurs time.
Step 2.10
The LCM of is the result of multiplying all factors the greatest number of times they occur in either term.
Step 2.11
The Least Common Multiple of some numbers is the smallest number that the numbers are factors of.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Rewrite using the commutative property of multiplication.
Step 3.2.1.2
Multiply .
Step 3.2.1.2.1
Combine and .
Step 3.2.1.2.2
Multiply by .
Step 3.2.1.3
Cancel the common factor of .
Step 3.2.1.3.1
Cancel the common factor.
Step 3.2.1.3.2
Rewrite the expression.
Step 3.2.1.4
Cancel the common factor of .
Step 3.2.1.4.1
Move the leading negative in into the numerator.
Step 3.2.1.4.2
Factor out of .
Step 3.2.1.4.3
Cancel the common factor.
Step 3.2.1.4.4
Rewrite the expression.
Step 3.2.1.5
Multiply by .
Step 3.2.1.6
Apply the distributive property.
Step 3.2.1.7
Multiply by .
Step 3.2.2
Add and .
Step 3.3
Simplify the right side.
Step 3.3.1
Reduce the expression by cancelling the common factors.
Step 3.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.3.1.2
Cancel the common factor of .
Step 3.3.1.2.1
Cancel the common factor.
Step 3.3.1.2.2
Rewrite the expression.
Step 3.3.1.3
Cancel the common factor of .
Step 3.3.1.3.1
Factor out of .
Step 3.3.1.3.2
Cancel the common factor.
Step 3.3.1.3.3
Rewrite the expression.
Step 3.3.2
Expand using the FOIL Method.
Step 3.3.2.1
Apply the distributive property.
Step 3.3.2.2
Apply the distributive property.
Step 3.3.2.3
Apply the distributive property.
Step 3.3.3
Simplify and combine like terms.
Step 3.3.3.1
Simplify each term.
Step 3.3.3.1.1
Multiply by .
Step 3.3.3.1.2
Move to the left of .
Step 3.3.3.1.3
Multiply by .
Step 3.3.3.2
Add and .
Step 4
Step 4.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 4.2
Move all terms containing to the left side of the equation.
Step 4.2.1
Add to both sides of the equation.
Step 4.2.2
Add and .
Step 4.3
Subtract from both sides of the equation.
Step 4.4
Subtract from .
Step 4.5
Factor using the AC method.
Step 4.5.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 4.5.2
Write the factored form using these integers.
Step 4.6
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.7
Set equal to and solve for .
Step 4.7.1
Set equal to .
Step 4.7.2
Add to both sides of the equation.
Step 4.8
Set equal to and solve for .
Step 4.8.1
Set equal to .
Step 4.8.2
Subtract from both sides of the equation.
Step 4.9
The final solution is all the values that make true.