Algebra Examples

Expand Using Pascal's Triangle (2x^2-3y)^3
(2x2-3y)3
Step 1
Pascal's Triangle can be displayed as such:
1
1-1
1-2-1
1-3-3-1
The triangle can be used to calculate the coefficients of the expansion of (a+b)n by taking the exponent n and adding 1. The coefficients will correspond with line n+1 of the triangle. For (2x2-3y)3, n=3 so the coefficients of the expansion will correspond with line 4.
Step 2
The expansion follows the rule (a+b)n=c0anb0+c1an-1b1+cn-1a1bn-1+cna0bn. The values of the coefficients, from the triangle, are 1-3-3-1.
1a3b0+3a2b+3ab2+1a0b3
Step 3
Substitute the actual values of a 2x2 and b -3y into the expression.
1(2x2)3(-3y)0+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply (2x2)3 by 1.
(2x2)3(-3y)0+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.2
Apply the product rule to 2x2.
23(x2)3(-3y)0+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.3
Raise 2 to the power of 3.
8(x2)3(-3y)0+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.4
Multiply the exponents in (x2)3.
Tap for more steps...
Step 4.4.1
Apply the power rule and multiply exponents, (am)n=amn.
8x23(-3y)0+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.4.2
Multiply 2 by 3.
8x6(-3y)0+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
8x6(-3y)0+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.5
Apply the product rule to -3y.
8x6((-3)0y0)+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.6
Rewrite using the commutative property of multiplication.
8(-3)0x6y0+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.7
Anything raised to 0 is 1.
81x6y0+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.8
Multiply 8 by 1.
8x6y0+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.9
Anything raised to 0 is 1.
8x61+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.10
Multiply 8 by 1.
8x6+3(2x2)2(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.11
Apply the product rule to 2x2.
8x6+3(22(x2)2)(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.12
Raise 2 to the power of 2.
8x6+3(4(x2)2)(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.13
Multiply the exponents in (x2)2.
Tap for more steps...
Step 4.13.1
Apply the power rule and multiply exponents, (am)n=amn.
8x6+3(4x22)(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.13.2
Multiply 2 by 2.
8x6+3(4x4)(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
8x6+3(4x4)(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.14
Multiply 4 by 3.
8x6+12x4(-3y)1+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.15
Simplify.
8x6+12x4(-3y)+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.16
Rewrite using the commutative property of multiplication.
8x6+12-3x4y+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.17
Multiply 12 by -3.
8x6-36x4y+3(2x2)1(-3y)2+1(2x2)0(-3y)3
Step 4.18
Simplify.
8x6-36x4y+3(2x2)(-3y)2+1(2x2)0(-3y)3
Step 4.19
Multiply 2 by 3.
8x6-36x4y+6x2(-3y)2+1(2x2)0(-3y)3
Step 4.20
Apply the product rule to -3y.
8x6-36x4y+6x2((-3)2y2)+1(2x2)0(-3y)3
Step 4.21
Rewrite using the commutative property of multiplication.
8x6-36x4y+6(-3)2x2y2+1(2x2)0(-3y)3
Step 4.22
Raise -3 to the power of 2.
8x6-36x4y+69x2y2+1(2x2)0(-3y)3
Step 4.23
Multiply 6 by 9.
8x6-36x4y+54x2y2+1(2x2)0(-3y)3
Step 4.24
Multiply (2x2)0 by 1.
8x6-36x4y+54x2y2+(2x2)0(-3y)3
Step 4.25
Apply the product rule to 2x2.
8x6-36x4y+54x2y2+20(x2)0(-3y)3
Step 4.26
Anything raised to 0 is 1.
8x6-36x4y+54x2y2+1(x2)0(-3y)3
Step 4.27
Multiply (x2)0 by 1.
8x6-36x4y+54x2y2+(x2)0(-3y)3
Step 4.28
Multiply the exponents in (x2)0.
Tap for more steps...
Step 4.28.1
Apply the power rule and multiply exponents, (am)n=amn.
8x6-36x4y+54x2y2+x20(-3y)3
Step 4.28.2
Multiply 2 by 0.
8x6-36x4y+54x2y2+x0(-3y)3
8x6-36x4y+54x2y2+x0(-3y)3
Step 4.29
Anything raised to 0 is 1.
8x6-36x4y+54x2y2+1(-3y)3
Step 4.30
Multiply (-3y)3 by 1.
8x6-36x4y+54x2y2+(-3y)3
Step 4.31
Apply the product rule to -3y.
8x6-36x4y+54x2y2+(-3)3y3
Step 4.32
Raise -3 to the power of 3.
8x6-36x4y+54x2y2-27y3
8x6-36x4y+54x2y2-27y3
 [x2  12  π  xdx ]