Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Multiply both sides by .
Step 2.3
Simplify.
Step 2.3.1
Simplify the left side.
Step 2.3.1.1
Simplify .
Step 2.3.1.1.1
Cancel the common factor of .
Step 2.3.1.1.1.1
Cancel the common factor.
Step 2.3.1.1.1.2
Rewrite the expression.
Step 2.3.1.1.2
Reorder and .
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Move to the left of .
Step 2.4
Solve for .
Step 2.4.1
Subtract from both sides of the equation.
Step 2.4.2
Divide each term in by and simplify.
Step 2.4.2.1
Divide each term in by .
Step 2.4.2.2
Simplify the left side.
Step 2.4.2.2.1
Dividing two negative values results in a positive value.
Step 2.4.2.2.2
Divide by .
Step 2.4.2.3
Simplify the right side.
Step 2.4.2.3.1
Simplify each term.
Step 2.4.2.3.1.1
Move the negative one from the denominator of .
Step 2.4.2.3.1.2
Rewrite as .
Step 2.4.2.3.1.3
Multiply by .
Step 2.4.2.3.1.4
Divide by .
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Simplify each term.
Step 4.2.3.1
Cancel the common factor of .
Step 4.2.3.1.1
Factor out of .
Step 4.2.3.1.2
Cancel the common factor.
Step 4.2.3.1.3
Rewrite the expression.
Step 4.2.3.2
Apply the distributive property.
Step 4.2.3.3
Multiply by .
Step 4.2.3.4
Multiply .
Step 4.2.3.4.1
Multiply by .
Step 4.2.3.4.2
Multiply by .
Step 4.2.4
Combine the opposite terms in .
Step 4.2.4.1
Add and .
Step 4.2.4.2
Add and .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Simplify the numerator.
Step 4.3.3.1
Apply the distributive property.
Step 4.3.3.2
Multiply by .
Step 4.3.3.3
Multiply by .
Step 4.3.3.4
Subtract from .
Step 4.3.3.5
Add and .
Step 4.3.4
Cancel the common factor of .
Step 4.3.4.1
Cancel the common factor.
Step 4.3.4.2
Divide by .
Step 4.4
Since and , then is the inverse of .