Algebra Examples

Step 1
Solve for .
Tap for more steps...
Step 1.1
Rewrite so is on the left side of the inequality.
Step 1.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Dividing two negative values results in a positive value.
Step 1.2.2.2
Divide by .
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Move the negative one from the denominator of .
Step 1.2.3.2
Rewrite as .
Step 2
Use the slope-intercept form to find the slope and y-intercept.
Tap for more steps...
Step 2.1
The slope-intercept form is , where is the slope and is the y-intercept.
Step 2.2
Find the values of and using the form .
Step 2.3
The slope of the line is the value of , and the y-intercept is the value of .
Slope:
y-intercept:
Slope:
y-intercept:
Step 3
Graph a dashed line, then shade the area above the boundary line since is greater than .
Step 4