Enter a problem...
Algebra Examples
Step 1
Step 1.1
Add to both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Move the negative in front of the fraction.
Step 1.2.3.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.3.1.3
Multiply .
Step 1.2.3.1.3.1
Multiply by .
Step 1.2.3.1.3.2
Multiply by .
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Multiply .
Step 2.2.1.1.2.1
Multiply by .
Step 2.2.1.1.2.2
Combine and .
Step 2.2.1.1.3
Combine and .
Step 2.2.1.1.4
Move the negative in front of the fraction.
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Simplify terms.
Step 2.2.1.3.1
Combine and .
Step 2.2.1.3.2
Combine the numerators over the common denominator.
Step 2.2.1.4
Simplify each term.
Step 2.2.1.4.1
Simplify the numerator.
Step 2.2.1.4.1.1
Factor out of .
Step 2.2.1.4.1.1.1
Factor out of .
Step 2.2.1.4.1.1.2
Factor out of .
Step 2.2.1.4.1.1.3
Factor out of .
Step 2.2.1.4.1.2
Multiply by .
Step 2.2.1.4.1.3
Subtract from .
Step 2.2.1.4.2
Move to the left of .
Step 2.2.1.4.3
Move the negative in front of the fraction.
Step 3
Step 3.1
Move all terms not containing to the right side of the equation.
Step 3.1.1
Add to both sides of the equation.
Step 3.1.2
Write as a fraction with a common denominator.
Step 3.1.3
Combine the numerators over the common denominator.
Step 3.1.4
Add and .
Step 3.2
Multiply both sides of the equation by .
Step 3.3
Simplify both sides of the equation.
Step 3.3.1
Simplify the left side.
Step 3.3.1.1
Simplify .
Step 3.3.1.1.1
Cancel the common factor of .
Step 3.3.1.1.1.1
Move the leading negative in into the numerator.
Step 3.3.1.1.1.2
Move the leading negative in into the numerator.
Step 3.3.1.1.1.3
Factor out of .
Step 3.3.1.1.1.4
Cancel the common factor.
Step 3.3.1.1.1.5
Rewrite the expression.
Step 3.3.1.1.2
Cancel the common factor of .
Step 3.3.1.1.2.1
Factor out of .
Step 3.3.1.1.2.2
Cancel the common factor.
Step 3.3.1.1.2.3
Rewrite the expression.
Step 3.3.1.1.3
Multiply.
Step 3.3.1.1.3.1
Multiply by .
Step 3.3.1.1.3.2
Multiply by .
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Cancel the common factor of .
Step 3.3.2.1.1.1
Move the leading negative in into the numerator.
Step 3.3.2.1.1.2
Factor out of .
Step 3.3.2.1.1.3
Cancel the common factor.
Step 3.3.2.1.1.4
Rewrite the expression.
Step 3.3.2.1.2
Combine and .
Step 3.3.2.1.3
Simplify the expression.
Step 3.3.2.1.3.1
Multiply by .
Step 3.3.2.1.3.2
Move the negative in front of the fraction.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.1.1.2
Cancel the common factor of .
Step 4.2.1.1.2.1
Move the leading negative in into the numerator.
Step 4.2.1.1.2.2
Factor out of .
Step 4.2.1.1.2.3
Factor out of .
Step 4.2.1.1.2.4
Cancel the common factor.
Step 4.2.1.1.2.5
Rewrite the expression.
Step 4.2.1.1.3
Multiply by .
Step 4.2.1.1.4
Multiply by .
Step 4.2.1.1.5
Move the negative in front of the fraction.
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 4.2.1.3.1
Multiply by .
Step 4.2.1.3.2
Multiply by .
Step 4.2.1.4
Simplify the expression.
Step 4.2.1.4.1
Combine the numerators over the common denominator.
Step 4.2.1.4.2
Subtract from .
Step 4.2.1.5
Cancel the common factor of and .
Step 4.2.1.5.1
Factor out of .
Step 4.2.1.5.2
Cancel the common factors.
Step 4.2.1.5.2.1
Factor out of .
Step 4.2.1.5.2.2
Cancel the common factor.
Step 4.2.1.5.2.3
Rewrite the expression.
Step 4.2.1.6
Move the negative in front of the fraction.
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 6
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 7