Enter a problem...
Algebra Examples
Step 1
Step 1.1
Use the Binomial Theorem.
Step 1.2
Simplify each term.
Step 1.2.1
Rewrite using the commutative property of multiplication.
Step 1.2.2
Multiply by .
Step 1.2.3
Apply the product rule to .
Step 1.2.4
Rewrite using the commutative property of multiplication.
Step 1.2.5
Raise to the power of .
Step 1.2.6
Multiply by .
Step 1.2.7
Apply the product rule to .
Step 1.2.8
Rewrite using the commutative property of multiplication.
Step 1.2.9
Raise to the power of .
Step 1.2.10
Multiply by .
Step 1.2.11
Apply the product rule to .
Step 1.2.12
Rewrite using the commutative property of multiplication.
Step 1.2.13
Raise to the power of .
Step 1.2.14
Multiply by .
Step 1.2.15
Apply the product rule to .
Step 1.2.16
Raise to the power of .
Step 1.3
Use the Binomial Theorem.
Step 1.4
Simplify each term.
Step 1.4.1
Rewrite using the commutative property of multiplication.
Step 1.4.2
Multiply by .
Step 1.4.3
Apply the product rule to .
Step 1.4.4
Rewrite using the commutative property of multiplication.
Step 1.4.5
Raise to the power of .
Step 1.4.6
Multiply by .
Step 1.4.7
Apply the product rule to .
Step 1.4.8
Rewrite using the commutative property of multiplication.
Step 1.4.9
Raise to the power of .
Step 1.4.10
Multiply by .
Step 1.4.11
Apply the product rule to .
Step 1.4.12
Rewrite using the commutative property of multiplication.
Step 1.4.13
Raise to the power of .
Step 1.4.14
Multiply by .
Step 1.4.15
Apply the product rule to .
Step 1.4.16
Raise to the power of .
Step 2
Step 2.1
Combine the opposite terms in .
Step 2.1.1
Add and .
Step 2.1.2
Add and .
Step 2.2
Simplify the expression.
Step 2.2.1
Move .
Step 2.2.2
Move .
Step 2.2.3
Move .
Step 2.2.4
Move .
Step 2.2.5
Move .
Step 2.2.6
Move .
Step 2.2.7
Move .
Step 2.2.8
Move .
Step 2.2.9
Move .
Step 2.2.10
Move .
Step 2.2.11
Move .
Step 2.2.12
Move .
Step 2.2.13
Reorder and .