Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Move all terms not containing to the right side of the equation.
Step 2.2.1
Add to both sides of the equation.
Step 2.2.2
Add to both sides of the equation.
Step 2.3
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.4
Simplify the exponent.
Step 2.4.1
Simplify the left side.
Step 2.4.1.1
Simplify .
Step 2.4.1.1.1
Apply the product rule to .
Step 2.4.1.1.2
Raise to the power of .
Step 2.4.1.1.3
Multiply the exponents in .
Step 2.4.1.1.3.1
Apply the power rule and multiply exponents, .
Step 2.4.1.1.3.2
Cancel the common factor of .
Step 2.4.1.1.3.2.1
Cancel the common factor.
Step 2.4.1.1.3.2.2
Rewrite the expression.
Step 2.4.1.1.4
Simplify.
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify .
Step 2.4.2.1.1
Use the Binomial Theorem.
Step 2.4.2.1.2
Simplify each term.
Step 2.4.2.1.2.1
Raise to the power of .
Step 2.4.2.1.2.2
Raise to the power of .
Step 2.4.2.1.2.3
Multiply by .
Step 2.4.2.1.2.4
Multiply by .
Step 2.5
Divide each term in by and simplify.
Step 2.5.1
Divide each term in by .
Step 2.5.2
Simplify the left side.
Step 2.5.2.1
Cancel the common factor of .
Step 2.5.2.1.1
Cancel the common factor.
Step 2.5.2.1.2
Divide by .
Step 2.5.3
Simplify the right side.
Step 2.5.3.1
Simplify each term.
Step 2.5.3.1.1
Cancel the common factor of and .
Step 2.5.3.1.1.1
Factor out of .
Step 2.5.3.1.1.2
Cancel the common factors.
Step 2.5.3.1.1.2.1
Factor out of .
Step 2.5.3.1.1.2.2
Cancel the common factor.
Step 2.5.3.1.1.2.3
Rewrite the expression.
Step 2.5.3.1.2
Cancel the common factor of and .
Step 2.5.3.1.2.1
Factor out of .
Step 2.5.3.1.2.2
Cancel the common factors.
Step 2.5.3.1.2.2.1
Factor out of .
Step 2.5.3.1.2.2.2
Cancel the common factor.
Step 2.5.3.1.2.2.3
Rewrite the expression.
Step 2.5.3.1.3
Cancel the common factor of and .
Step 2.5.3.1.3.1
Factor out of .
Step 2.5.3.1.3.2
Cancel the common factors.
Step 2.5.3.1.3.2.1
Factor out of .
Step 2.5.3.1.3.2.2
Cancel the common factor.
Step 2.5.3.1.3.2.3
Rewrite the expression.
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Simplify each term.
Step 4.2.3.1
Factor out of .
Step 4.2.3.2
Cancel the common factors.
Step 4.2.3.2.1
Factor out of .
Step 4.2.3.2.2
Cancel the common factor.
Step 4.2.3.2.3
Rewrite the expression.
Step 4.2.3.3
Simplify the numerator.
Step 4.2.3.3.1
Factor out of .
Step 4.2.3.3.1.1
Factor out of .
Step 4.2.3.3.1.2
Factor out of .
Step 4.2.3.3.1.3
Factor out of .
Step 4.2.3.3.2
Apply the product rule to .
Step 4.2.3.3.3
Raise to the power of .
Step 4.2.3.3.4
Multiply by .
Step 4.2.3.4
Factor out of .
Step 4.2.3.5
Cancel the common factors.
Step 4.2.3.5.1
Factor out of .
Step 4.2.3.5.2
Cancel the common factor.
Step 4.2.3.5.3
Rewrite the expression.
Step 4.2.3.6
Simplify the numerator.
Step 4.2.3.6.1
Factor out of .
Step 4.2.3.6.1.1
Factor out of .
Step 4.2.3.6.1.2
Factor out of .
Step 4.2.3.6.1.3
Factor out of .
Step 4.2.3.6.2
Apply the product rule to .
Step 4.2.3.6.3
Raise to the power of .
Step 4.2.3.7
Factor out of .
Step 4.2.3.8
Cancel the common factors.
Step 4.2.3.8.1
Factor out of .
Step 4.2.3.8.2
Cancel the common factor.
Step 4.2.3.8.3
Rewrite the expression.
Step 4.2.4
Combine the numerators over the common denominator.
Step 4.2.5
Simplify each term.
Step 4.2.5.1
Apply the distributive property.
Step 4.2.5.2
Multiply by .
Step 4.2.5.3
Multiply by .
Step 4.2.5.4
Rewrite as .
Step 4.2.5.5
Expand using the FOIL Method.
Step 4.2.5.5.1
Apply the distributive property.
Step 4.2.5.5.2
Apply the distributive property.
Step 4.2.5.5.3
Apply the distributive property.
Step 4.2.5.6
Simplify and combine like terms.
Step 4.2.5.6.1
Simplify each term.
Step 4.2.5.6.1.1
Rewrite using the commutative property of multiplication.
Step 4.2.5.6.1.2
Multiply by by adding the exponents.
Step 4.2.5.6.1.2.1
Move .
Step 4.2.5.6.1.2.2
Use the power rule to combine exponents.
Step 4.2.5.6.1.2.3
Combine the numerators over the common denominator.
Step 4.2.5.6.1.2.4
Add and .
Step 4.2.5.6.1.3
Multiply by .
Step 4.2.5.6.1.4
Multiply by .
Step 4.2.5.6.1.5
Multiply by .
Step 4.2.5.6.1.6
Multiply by .
Step 4.2.5.6.2
Subtract from .
Step 4.2.5.7
Apply the distributive property.
Step 4.2.5.8
Simplify.
Step 4.2.5.8.1
Multiply by .
Step 4.2.5.8.2
Multiply by .
Step 4.2.5.8.3
Multiply by .
Step 4.2.5.9
Use the Binomial Theorem.
Step 4.2.5.10
Simplify each term.
Step 4.2.5.10.1
Apply the product rule to .
Step 4.2.5.10.2
Raise to the power of .
Step 4.2.5.10.3
Multiply the exponents in .
Step 4.2.5.10.3.1
Apply the power rule and multiply exponents, .
Step 4.2.5.10.3.2
Cancel the common factor of .
Step 4.2.5.10.3.2.1
Cancel the common factor.
Step 4.2.5.10.3.2.2
Rewrite the expression.
Step 4.2.5.10.4
Simplify.
Step 4.2.5.10.5
Apply the product rule to .
Step 4.2.5.10.6
Raise to the power of .
Step 4.2.5.10.7
Multiply the exponents in .
Step 4.2.5.10.7.1
Apply the power rule and multiply exponents, .
Step 4.2.5.10.7.2
Combine and .
Step 4.2.5.10.8
Multiply by .
Step 4.2.5.10.9
Multiply by .
Step 4.2.5.10.10
Multiply by .
Step 4.2.5.10.11
Raise to the power of .
Step 4.2.5.10.12
Multiply by .
Step 4.2.5.10.13
Raise to the power of .
Step 4.2.6
Simplify terms.
Step 4.2.6.1
Combine the opposite terms in .
Step 4.2.6.1.1
Add and .
Step 4.2.6.1.2
Add and .
Step 4.2.6.1.3
Subtract from .
Step 4.2.6.1.4
Add and .
Step 4.2.6.1.5
Subtract from .
Step 4.2.6.1.6
Add and .
Step 4.2.6.2
Subtract from .
Step 4.2.6.3
Combine the opposite terms in .
Step 4.2.6.3.1
Add and .
Step 4.2.6.3.2
Add and .
Step 4.2.6.4
Cancel the common factor of .
Step 4.2.6.4.1
Cancel the common factor.
Step 4.2.6.4.2
Divide by .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Move .
Step 4.3.4
Move .
Step 4.3.5
Reorder and .
Step 4.4
Since and , then is the inverse of .