Algebra Examples

Find the Inverse f(x)=8((x^(1/3))/9+4)
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor.
Step 3.2.2.2
Divide by .
Step 3.3
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.3.1
Subtract from both sides of the equation.
Step 3.3.2
Add to both sides of the equation.
Step 3.4
Multiply both sides of the equation by .
Step 3.5
Simplify both sides of the equation.
Tap for more steps...
Step 3.5.1
Simplify the left side.
Tap for more steps...
Step 3.5.1.1
Cancel the common factor of .
Tap for more steps...
Step 3.5.1.1.1
Cancel the common factor.
Step 3.5.1.1.2
Rewrite the expression.
Step 3.5.2
Simplify the right side.
Tap for more steps...
Step 3.5.2.1
Simplify .
Tap for more steps...
Step 3.5.2.1.1
Apply the distributive property.
Step 3.5.2.1.2
Multiply by .
Step 3.5.2.1.3
Combine and .
Step 3.6
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.7
Simplify the exponent.
Tap for more steps...
Step 3.7.1
Simplify the left side.
Tap for more steps...
Step 3.7.1.1
Simplify .
Tap for more steps...
Step 3.7.1.1.1
Multiply the exponents in .
Tap for more steps...
Step 3.7.1.1.1.1
Apply the power rule and multiply exponents, .
Step 3.7.1.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.7.1.1.1.2.1
Cancel the common factor.
Step 3.7.1.1.1.2.2
Rewrite the expression.
Step 3.7.1.1.2
Simplify.
Step 3.7.2
Simplify the right side.
Tap for more steps...
Step 3.7.2.1
Simplify .
Tap for more steps...
Step 3.7.2.1.1
Use the Binomial Theorem.
Step 3.7.2.1.2
Simplify each term.
Tap for more steps...
Step 3.7.2.1.2.1
Raise to the power of .
Step 3.7.2.1.2.2
Raise to the power of .
Step 3.7.2.1.2.3
Multiply by .
Step 3.7.2.1.2.4
Cancel the common factor of .
Tap for more steps...
Step 3.7.2.1.2.4.1
Factor out of .
Step 3.7.2.1.2.4.2
Cancel the common factor.
Step 3.7.2.1.2.4.3
Rewrite the expression.
Step 3.7.2.1.2.5
Multiply by .
Step 3.7.2.1.2.6
Multiply by .
Step 3.7.2.1.2.7
Use the power rule to distribute the exponent.
Tap for more steps...
Step 3.7.2.1.2.7.1
Apply the product rule to .
Step 3.7.2.1.2.7.2
Apply the product rule to .
Step 3.7.2.1.2.8
Raise to the power of .
Step 3.7.2.1.2.9
Raise to the power of .
Step 3.7.2.1.2.10
Cancel the common factor of .
Tap for more steps...
Step 3.7.2.1.2.10.1
Factor out of .
Step 3.7.2.1.2.10.2
Factor out of .
Step 3.7.2.1.2.10.3
Cancel the common factor.
Step 3.7.2.1.2.10.4
Rewrite the expression.
Step 3.7.2.1.2.11
Combine and .
Step 3.7.2.1.2.12
Multiply by .
Step 3.7.2.1.2.13
Move the negative in front of the fraction.
Step 3.7.2.1.2.14
Use the power rule to distribute the exponent.
Tap for more steps...
Step 3.7.2.1.2.14.1
Apply the product rule to .
Step 3.7.2.1.2.14.2
Apply the product rule to .
Step 3.7.2.1.2.15
Raise to the power of .
Step 3.7.2.1.2.16
Raise to the power of .
Step 3.8
Simplify .
Tap for more steps...
Step 3.8.1
Move .
Step 3.8.2
Move .
Step 3.8.3
Reorder and .
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Tap for more steps...
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Tap for more steps...
Step 5.2.3.1
Simplify the numerator.
Tap for more steps...
Step 5.2.3.1.1
Apply the product rule to .
Step 5.2.3.1.2
Raise to the power of .
Step 5.2.3.1.3
To write as a fraction with a common denominator, multiply by .
Step 5.2.3.1.4
Combine and .
Step 5.2.3.1.5
Combine the numerators over the common denominator.
Step 5.2.3.1.6
Multiply by .
Step 5.2.3.1.7
Multiply by .
Step 5.2.3.1.8
Apply the product rule to .
Step 5.2.3.1.9
Raise to the power of .
Step 5.2.3.2
Combine and .
Step 5.2.3.3
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 5.2.3.3.1
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 5.2.3.3.1.1
Factor out of .
Step 5.2.3.3.1.2
Factor out of .
Step 5.2.3.3.1.3
Cancel the common factor.
Step 5.2.3.3.1.4
Rewrite the expression.
Step 5.2.3.3.2
Divide by .
Step 5.2.3.4
Cancel the common factor.
Step 5.2.3.5
Divide by .
Step 5.2.3.6
Use the Binomial Theorem.
Step 5.2.3.7
Simplify each term.
Tap for more steps...
Step 5.2.3.7.1
Multiply the exponents in .
Tap for more steps...
Step 5.2.3.7.1.1
Apply the power rule and multiply exponents, .
Step 5.2.3.7.1.2
Cancel the common factor of .
Tap for more steps...
Step 5.2.3.7.1.2.1
Cancel the common factor.
Step 5.2.3.7.1.2.2
Rewrite the expression.
Step 5.2.3.7.2
Simplify.
Step 5.2.3.7.3
Multiply the exponents in .
Tap for more steps...
Step 5.2.3.7.3.1
Apply the power rule and multiply exponents, .
Step 5.2.3.7.3.2
Combine and .
Step 5.2.3.7.4
Multiply by .
Step 5.2.3.7.5
Raise to the power of .
Step 5.2.3.7.6
Multiply by .
Step 5.2.3.7.7
Raise to the power of .
Step 5.2.3.8
Simplify the numerator.
Tap for more steps...
Step 5.2.3.8.1
Apply the product rule to .
Step 5.2.3.8.2
Raise to the power of .
Step 5.2.3.8.3
To write as a fraction with a common denominator, multiply by .
Step 5.2.3.8.4
Combine and .
Step 5.2.3.8.5
Combine the numerators over the common denominator.
Step 5.2.3.8.6
Multiply by .
Step 5.2.3.8.7
Multiply by .
Step 5.2.3.8.8
Apply the product rule to .
Step 5.2.3.8.9
Raise to the power of .
Step 5.2.3.9
Combine and .
Step 5.2.3.10
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 5.2.3.10.1
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 5.2.3.10.1.1
Factor out of .
Step 5.2.3.10.1.2
Factor out of .
Step 5.2.3.10.1.3
Cancel the common factor.
Step 5.2.3.10.1.4
Rewrite the expression.
Step 5.2.3.10.2
Divide by .
Step 5.2.3.11
Factor out of .
Step 5.2.3.12
Cancel the common factors.
Tap for more steps...
Step 5.2.3.12.1
Factor out of .
Step 5.2.3.12.2
Cancel the common factor.
Step 5.2.3.12.3
Rewrite the expression.
Step 5.2.3.12.4
Divide by .
Step 5.2.3.13
Rewrite as .
Step 5.2.3.14
Expand using the FOIL Method.
Tap for more steps...
Step 5.2.3.14.1
Apply the distributive property.
Step 5.2.3.14.2
Apply the distributive property.
Step 5.2.3.14.3
Apply the distributive property.
Step 5.2.3.15
Simplify and combine like terms.
Tap for more steps...
Step 5.2.3.15.1
Simplify each term.
Tap for more steps...
Step 5.2.3.15.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.3.15.1.1.1
Use the power rule to combine exponents.
Step 5.2.3.15.1.1.2
Combine the numerators over the common denominator.
Step 5.2.3.15.1.1.3
Add and .
Step 5.2.3.15.1.2
Move to the left of .
Step 5.2.3.15.1.3
Multiply by .
Step 5.2.3.15.2
Add and .
Step 5.2.3.16
Apply the distributive property.
Step 5.2.3.17
Simplify.
Tap for more steps...
Step 5.2.3.17.1
Multiply by .
Step 5.2.3.17.2
Multiply by .
Step 5.2.3.18
Apply the distributive property.
Step 5.2.3.19
Simplify.
Tap for more steps...
Step 5.2.3.19.1
Multiply by .
Step 5.2.3.19.2
Multiply by .
Step 5.2.3.19.3
Multiply by .
Step 5.2.3.20
Apply the distributive property.
Step 5.2.3.21
Combine and .
Step 5.2.3.22
Multiply by .
Step 5.2.3.23
Apply the distributive property.
Step 5.2.3.24
Cancel the common factor of .
Tap for more steps...
Step 5.2.3.24.1
Factor out of .
Step 5.2.3.24.2
Cancel the common factor.
Step 5.2.3.24.3
Rewrite the expression.
Step 5.2.3.25
Multiply by .
Step 5.2.3.26
Multiply by .
Step 5.2.4
Simplify by adding terms.
Tap for more steps...
Step 5.2.4.1
Combine the opposite terms in .
Tap for more steps...
Step 5.2.4.1.1
Subtract from .
Step 5.2.4.1.2
Add and .
Step 5.2.4.1.3
Add and .
Step 5.2.4.1.4
Add and .
Step 5.2.4.1.5
Subtract from .
Step 5.2.4.1.6
Add and .
Step 5.2.4.2
Subtract from .
Step 5.2.4.3
Combine the opposite terms in .
Tap for more steps...
Step 5.2.4.3.1
Add and .
Step 5.2.4.3.2
Add and .
Step 5.3
Evaluate .
Tap for more steps...
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
Simplify the numerator.
Tap for more steps...
Step 5.3.3.1.1
To write as a fraction with a common denominator, multiply by .
Step 5.3.3.1.2
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 5.3.3.1.2.1
Multiply by .
Step 5.3.3.1.2.2
Multiply by .
Step 5.3.3.1.3
Combine the numerators over the common denominator.
Step 5.3.3.1.4
Simplify the numerator.
Tap for more steps...
Step 5.3.3.1.4.1
Factor out of .
Tap for more steps...
Step 5.3.3.1.4.1.1
Factor out of .
Step 5.3.3.1.4.1.2
Factor out of .
Step 5.3.3.1.4.1.3
Factor out of .
Step 5.3.3.1.4.2
Multiply by .
Step 5.3.3.1.5
To write as a fraction with a common denominator, multiply by .
Step 5.3.3.1.6
Combine and .
Step 5.3.3.1.7
Combine the numerators over the common denominator.
Step 5.3.3.1.8
Simplify the numerator.
Tap for more steps...
Step 5.3.3.1.8.1
Factor out of .
Tap for more steps...
Step 5.3.3.1.8.1.1
Factor out of .
Step 5.3.3.1.8.1.2
Factor out of .
Step 5.3.3.1.8.1.3
Factor out of .
Step 5.3.3.1.8.2
Multiply by .
Step 5.3.3.1.8.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1.8.3.1
Apply the distributive property.
Step 5.3.3.1.8.3.2
Multiply by .
Step 5.3.3.1.8.3.3
Move to the left of .
Step 5.3.3.1.9
To write as a fraction with a common denominator, multiply by .
Step 5.3.3.1.10
Combine and .
Step 5.3.3.1.11
Combine the numerators over the common denominator.
Step 5.3.3.1.12
Simplify the numerator.
Tap for more steps...
Step 5.3.3.1.12.1
Factor out of .
Tap for more steps...
Step 5.3.3.1.12.1.1
Factor out of .
Step 5.3.3.1.12.1.2
Factor out of .
Step 5.3.3.1.12.1.3
Factor out of .
Step 5.3.3.1.12.2
Apply the distributive property.
Step 5.3.3.1.12.3
Simplify.
Tap for more steps...
Step 5.3.3.1.12.3.1
Multiply by by adding the exponents.
Tap for more steps...
Step 5.3.3.1.12.3.1.1
Multiply by .
Tap for more steps...
Step 5.3.3.1.12.3.1.1.1
Raise to the power of .
Step 5.3.3.1.12.3.1.1.2
Use the power rule to combine exponents.
Step 5.3.3.1.12.3.1.2
Add and .
Step 5.3.3.1.12.3.2
Rewrite using the commutative property of multiplication.
Step 5.3.3.1.12.3.3
Move to the left of .
Step 5.3.3.1.12.4
Multiply by by adding the exponents.
Tap for more steps...
Step 5.3.3.1.12.4.1
Move .
Step 5.3.3.1.12.4.2
Multiply by .
Step 5.3.3.1.12.5
Multiply by .
Step 5.3.3.1.12.6
Rewrite in a factored form.
Tap for more steps...
Step 5.3.3.1.12.6.1
Factor using the rational roots test.
Tap for more steps...
Step 5.3.3.1.12.6.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 5.3.3.1.12.6.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 5.3.3.1.12.6.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps...
Step 5.3.3.1.12.6.1.3.1
Substitute into the polynomial.
Step 5.3.3.1.12.6.1.3.2
Raise to the power of .
Step 5.3.3.1.12.6.1.3.3
Raise to the power of .
Step 5.3.3.1.12.6.1.3.4
Multiply by .
Step 5.3.3.1.12.6.1.3.5
Subtract from .
Step 5.3.3.1.12.6.1.3.6
Multiply by .
Step 5.3.3.1.12.6.1.3.7
Add and .
Step 5.3.3.1.12.6.1.3.8
Subtract from .
Step 5.3.3.1.12.6.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 5.3.3.1.12.6.1.5
Divide by .
Tap for more steps...
Step 5.3.3.1.12.6.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
--+-
Step 5.3.3.1.12.6.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
--+-
Step 5.3.3.1.12.6.1.5.3
Multiply the new quotient term by the divisor.
--+-
+-
Step 5.3.3.1.12.6.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
--+-
-+
Step 5.3.3.1.12.6.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--+-
-+
-
Step 5.3.3.1.12.6.1.5.6
Pull the next terms from the original dividend down into the current dividend.
--+-
-+
-+
Step 5.3.3.1.12.6.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
-
--+-
-+
-+
Step 5.3.3.1.12.6.1.5.8
Multiply the new quotient term by the divisor.
-
--+-
-+
-+
-+
Step 5.3.3.1.12.6.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
-
--+-
-+
-+
+-
Step 5.3.3.1.12.6.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
--+-
-+
-+
+-
+
Step 5.3.3.1.12.6.1.5.11
Pull the next terms from the original dividend down into the current dividend.
-
--+-
-+
-+
+-
+-
Step 5.3.3.1.12.6.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
-+
--+-
-+
-+
+-
+-
Step 5.3.3.1.12.6.1.5.13
Multiply the new quotient term by the divisor.
-+
--+-
-+
-+
+-
+-
+-
Step 5.3.3.1.12.6.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
-+
--+-
-+
-+
+-
+-
-+
Step 5.3.3.1.12.6.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
--+-
-+
-+
+-
+-
-+
Step 5.3.3.1.12.6.1.5.16
Since the remander is , the final answer is the quotient.
Step 5.3.3.1.12.6.1.6
Write as a set of factors.
Step 5.3.3.1.12.6.2
Factor using the perfect square rule.
Tap for more steps...
Step 5.3.3.1.12.6.2.1
Rewrite as .
Step 5.3.3.1.12.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 5.3.3.1.12.6.2.3
Rewrite the polynomial.
Step 5.3.3.1.12.6.2.4
Factor using the perfect square trinomial rule , where and .
Step 5.3.3.1.12.6.3
Combine like factors.
Tap for more steps...
Step 5.3.3.1.12.6.3.1
Raise to the power of .
Step 5.3.3.1.12.6.3.2
Use the power rule to combine exponents.
Step 5.3.3.1.12.6.3.3
Add and .
Step 5.3.3.1.13
Use the power rule to distribute the exponent.
Tap for more steps...
Step 5.3.3.1.13.1
Apply the product rule to .
Step 5.3.3.1.13.2
Apply the product rule to .
Step 5.3.3.1.14
Simplify the numerator.
Tap for more steps...
Step 5.3.3.1.14.1
Rewrite as .
Step 5.3.3.1.14.2
Apply the power rule and multiply exponents, .
Step 5.3.3.1.14.3
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.1.14.3.1
Cancel the common factor.
Step 5.3.3.1.14.3.2
Rewrite the expression.
Step 5.3.3.1.14.4
Evaluate the exponent.
Step 5.3.3.1.14.5
Multiply the exponents in .
Tap for more steps...
Step 5.3.3.1.14.5.1
Apply the power rule and multiply exponents, .
Step 5.3.3.1.14.5.2
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.1.14.5.2.1
Cancel the common factor.
Step 5.3.3.1.14.5.2.2
Rewrite the expression.
Step 5.3.3.1.14.6
Simplify.
Step 5.3.3.1.15
Simplify the denominator.
Tap for more steps...
Step 5.3.3.1.15.1
Rewrite as .
Step 5.3.3.1.15.2
Apply the power rule and multiply exponents, .
Step 5.3.3.1.15.3
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.1.15.3.1
Cancel the common factor.
Step 5.3.3.1.15.3.2
Rewrite the expression.
Step 5.3.3.1.15.4
Evaluate the exponent.
Step 5.3.3.2
Multiply the numerator by the reciprocal of the denominator.
Step 5.3.3.3
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.3.1
Cancel the common factor.
Step 5.3.3.3.2
Rewrite the expression.
Step 5.3.4
To write as a fraction with a common denominator, multiply by .
Step 5.3.5
Simplify terms.
Tap for more steps...
Step 5.3.5.1
Combine and .
Step 5.3.5.2
Combine the numerators over the common denominator.
Step 5.3.6
Simplify the numerator.
Tap for more steps...
Step 5.3.6.1
Multiply by .
Step 5.3.6.2
Add and .
Step 5.3.6.3
Add and .
Step 5.3.7
Cancel the common factor of .
Tap for more steps...
Step 5.3.7.1
Cancel the common factor.
Step 5.3.7.2
Rewrite the expression.
Step 5.4
Since and , then is the inverse of .