Enter a problem...
Algebra Examples
√4x+192=2√4x+192=2
Step 1
Multiply both sides by 22.
√4x+192⋅2=2⋅2√4x+192⋅2=2⋅2
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Cancel the common factor of 22.
Step 2.1.1.1
Cancel the common factor.
√4x+192⋅2=2⋅2
Step 2.1.1.2
Rewrite the expression.
√4x+19=2⋅2
√4x+19=2⋅2
√4x+19=2⋅2
Step 2.2
Simplify the right side.
Step 2.2.1
Multiply 2 by 2.
√4x+19=4
√4x+19=4
√4x+19=4
Step 3
Step 3.1
To remove the radical on the left side of the equation, square both sides of the equation.
√4x+192=42
Step 3.2
Simplify each side of the equation.
Step 3.2.1
Use n√ax=axn to rewrite √4x+19 as (4x+19)12.
((4x+19)12)2=42
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Simplify ((4x+19)12)2.
Step 3.2.2.1.1
Multiply the exponents in ((4x+19)12)2.
Step 3.2.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
(4x+19)12⋅2=42
Step 3.2.2.1.1.2
Cancel the common factor of 2.
Step 3.2.2.1.1.2.1
Cancel the common factor.
(4x+19)12⋅2=42
Step 3.2.2.1.1.2.2
Rewrite the expression.
(4x+19)1=42
(4x+19)1=42
(4x+19)1=42
Step 3.2.2.1.2
Simplify.
4x+19=42
4x+19=42
4x+19=42
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Raise 4 to the power of 2.
4x+19=16
4x+19=16
4x+19=16
Step 3.3
Solve for x.
Step 3.3.1
Move all terms not containing x to the right side of the equation.
Step 3.3.1.1
Subtract 19 from both sides of the equation.
4x=16-19
Step 3.3.1.2
Subtract 19 from 16.
4x=-3
4x=-3
Step 3.3.2
Divide each term in 4x=-3 by 4 and simplify.
Step 3.3.2.1
Divide each term in 4x=-3 by 4.
4x4=-34
Step 3.3.2.2
Simplify the left side.
Step 3.3.2.2.1
Cancel the common factor of 4.
Step 3.3.2.2.1.1
Cancel the common factor.
4x4=-34
Step 3.3.2.2.1.2
Divide x by 1.
x=-34
x=-34
x=-34
Step 3.3.2.3
Simplify the right side.
Step 3.3.2.3.1
Move the negative in front of the fraction.
x=-34
x=-34
x=-34
x=-34
x=-34
Step 4
The result can be shown in multiple forms.
Exact Form:
x=-34
Decimal Form:
x=-0.75