Enter a problem...
Algebra Examples
-4(x-3)(x-1)−4(x−3)(x−1)
Step 1
Step 1.1
Rewrite the equation in vertex form.
Step 1.1.1
Complete the square for -4(x-3)(x-1)−4(x−3)(x−1).
Step 1.1.1.1
Simplify the expression.
Step 1.1.1.1.1
Apply the distributive property.
(-4x-4⋅-3)(x-1)(−4x−4⋅−3)(x−1)
Step 1.1.1.1.2
Multiply -4−4 by -3−3.
(-4x+12)(x-1)(−4x+12)(x−1)
Step 1.1.1.1.3
Expand (-4x+12)(x-1)(−4x+12)(x−1) using the FOIL Method.
Step 1.1.1.1.3.1
Apply the distributive property.
-4x(x-1)+12(x-1)−4x(x−1)+12(x−1)
Step 1.1.1.1.3.2
Apply the distributive property.
-4x⋅x-4x⋅-1+12(x-1)−4x⋅x−4x⋅−1+12(x−1)
Step 1.1.1.1.3.3
Apply the distributive property.
-4x⋅x-4x⋅-1+12x+12⋅-1−4x⋅x−4x⋅−1+12x+12⋅−1
-4x⋅x-4x⋅-1+12x+12⋅-1−4x⋅x−4x⋅−1+12x+12⋅−1
Step 1.1.1.1.4
Simplify and combine like terms.
Step 1.1.1.1.4.1
Simplify each term.
Step 1.1.1.1.4.1.1
Multiply xx by xx by adding the exponents.
Step 1.1.1.1.4.1.1.1
Move xx.
-4(x⋅x)-4x⋅-1+12x+12⋅-1−4(x⋅x)−4x⋅−1+12x+12⋅−1
Step 1.1.1.1.4.1.1.2
Multiply xx by xx.
-4x2-4x⋅-1+12x+12⋅-1−4x2−4x⋅−1+12x+12⋅−1
-4x2-4x⋅-1+12x+12⋅-1
Step 1.1.1.1.4.1.2
Multiply -1 by -4.
-4x2+4x+12x+12⋅-1
Step 1.1.1.1.4.1.3
Multiply 12 by -1.
-4x2+4x+12x-12
-4x2+4x+12x-12
Step 1.1.1.1.4.2
Add 4x and 12x.
-4x2+16x-12
-4x2+16x-12
-4x2+16x-12
Step 1.1.1.2
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-4
b=16
c=-12
Step 1.1.1.3
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.1.1.4
Find the value of d using the formula d=b2a.
Step 1.1.1.4.1
Substitute the values of a and b into the formula d=b2a.
d=162⋅-4
Step 1.1.1.4.2
Simplify the right side.
Step 1.1.1.4.2.1
Cancel the common factor of 16 and 2.
Step 1.1.1.4.2.1.1
Factor 2 out of 16.
d=2⋅82⋅-4
Step 1.1.1.4.2.1.2
Cancel the common factors.
Step 1.1.1.4.2.1.2.1
Factor 2 out of 2⋅-4.
d=2⋅82(-4)
Step 1.1.1.4.2.1.2.2
Cancel the common factor.
d=2⋅82⋅-4
Step 1.1.1.4.2.1.2.3
Rewrite the expression.
d=8-4
d=8-4
d=8-4
Step 1.1.1.4.2.2
Cancel the common factor of 8 and -4.
Step 1.1.1.4.2.2.1
Factor 4 out of 8.
d=4(2)-4
Step 1.1.1.4.2.2.2
Move the negative one from the denominator of 2-1.
d=-1⋅2
d=-1⋅2
Step 1.1.1.4.2.3
Multiply -1 by 2.
d=-2
d=-2
d=-2
Step 1.1.1.5
Find the value of e using the formula e=c-b24a.
Step 1.1.1.5.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-12-1624⋅-4
Step 1.1.1.5.2
Simplify the right side.
Step 1.1.1.5.2.1
Simplify each term.
Step 1.1.1.5.2.1.1
Raise 16 to the power of 2.
e=-12-2564⋅-4
Step 1.1.1.5.2.1.2
Multiply 4 by -4.
e=-12-256-16
Step 1.1.1.5.2.1.3
Divide 256 by -16.
e=-12--16
Step 1.1.1.5.2.1.4
Multiply -1 by -16.
e=-12+16
e=-12+16
Step 1.1.1.5.2.2
Add -12 and 16.
e=4
e=4
e=4
Step 1.1.1.6
Substitute the values of a, d, and e into the vertex form -4(x-2)2+4.
-4(x-2)2+4
-4(x-2)2+4
Step 1.1.2
Set y equal to the new right side.
y=-4(x-2)2+4
y=-4(x-2)2+4
Step 1.2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=-4
h=2
k=4
Step 1.3
Since the value of a is negative, the parabola opens down.
Opens Down
Step 1.4
Find the vertex (h,k).
(2,4)
Step 1.5
Find p, the distance from the vertex to the focus.
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 1.5.2
Substitute the value of a into the formula.
14⋅-4
Step 1.5.3
Simplify.
Step 1.5.3.1
Multiply 4 by -4.
1-16
Step 1.5.3.2
Move the negative in front of the fraction.
-116
-116
-116
Step 1.6
Find the focus.
Step 1.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 1.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(2,6316)
(2,6316)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=2
Step 1.8
Find the directrix.
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 1.8.2
Substitute the known values of p and k into the formula and simplify.
y=6516
y=6516
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Down
Vertex: (2,4)
Focus: (2,6316)
Axis of Symmetry: x=2
Directrix: y=6516
Direction: Opens Down
Vertex: (2,4)
Focus: (2,6316)
Axis of Symmetry: x=2
Directrix: y=6516
Step 2
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=-4((1)-3)((1)-1)
Step 2.2
Simplify the result.
Step 2.2.1
Subtract 3 from 1.
f(1)=-4⋅(-2((1)-1))
Step 2.2.2
Multiply -4 by -2.
f(1)=8((1)-1)
Step 2.2.3
Subtract 1 from 1.
f(1)=8⋅0
Step 2.2.4
Multiply 8 by 0.
f(1)=0
Step 2.2.5
The final answer is 0.
0
0
Step 2.3
The y value at x=1 is 0.
y=0
Step 2.4
Replace the variable x with 0 in the expression.
f(0)=-4((0)-3)((0)-1)
Step 2.5
Simplify the result.
Step 2.5.1
Subtract 3 from 0.
f(0)=-4⋅(-3((0)-1))
Step 2.5.2
Multiply -4 by -3.
f(0)=12((0)-1)
Step 2.5.3
Subtract 1 from 0.
f(0)=12⋅-1
Step 2.5.4
Multiply 12 by -1.
f(0)=-12
Step 2.5.5
The final answer is -12.
-12
-12
Step 2.6
The y value at x=0 is -12.
y=-12
Step 2.7
Replace the variable x with 3 in the expression.
f(3)=-4((3)-3)((3)-1)
Step 2.8
Simplify the result.
Step 2.8.1
Subtract 3 from 3.
f(3)=-4⋅(0((3)-1))
Step 2.8.2
Multiply -4 by 0.
f(3)=0((3)-1)
Step 2.8.3
Subtract 1 from 3.
f(3)=0⋅2
Step 2.8.4
Multiply 0 by 2.
f(3)=0
Step 2.8.5
The final answer is 0.
0
0
Step 2.9
The y value at x=3 is 0.
y=0
Step 2.10
Replace the variable x with 4 in the expression.
f(4)=-4((4)-3)((4)-1)
Step 2.11
Simplify the result.
Step 2.11.1
Subtract 3 from 4.
f(4)=-4⋅(1((4)-1))
Step 2.11.2
Multiply -4 by 1.
f(4)=-4((4)-1)
Step 2.11.3
Subtract 1 from 4.
f(4)=-4⋅3
Step 2.11.4
Multiply -4 by 3.
f(4)=-12
Step 2.11.5
The final answer is -12.
-12
-12
Step 2.12
The y value at x=4 is -12.
y=-12
Step 2.13
Graph the parabola using its properties and the selected points.
xy0-121024304-12
xy0-121024304-12
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex: (2,4)
Focus: (2,6316)
Axis of Symmetry: x=2
Directrix: y=6516
xy0-121024304-12
Step 4