Enter a problem...
Algebra Examples
x3-2x2+xx3−2x2+x
Step 1
Step 1.1
Replace the variable xx with -1−1 in the expression.
f(-1)=(-1)3-2(-1)2-1f(−1)=(−1)3−2(−1)2−1
Step 1.2
Simplify the result.
Step 1.2.1
Remove parentheses.
f(-1)=(-1)3-2(-1)2-1f(−1)=(−1)3−2(−1)2−1
Step 1.2.2
Simplify each term.
Step 1.2.2.1
Raise -1−1 to the power of 33.
f(-1)=-1-2(-1)2-1f(−1)=−1−2(−1)2−1
Step 1.2.2.2
Raise -1−1 to the power of 22.
f(-1)=-1-2⋅1-1f(−1)=−1−2⋅1−1
Step 1.2.2.3
Multiply -2−2 by 11.
f(-1)=-1-2-1f(−1)=−1−2−1
f(-1)=-1-2-1f(−1)=−1−2−1
Step 1.2.3
Simplify by subtracting numbers.
Step 1.2.3.1
Subtract 22 from -1−1.
f(-1)=-3-1f(−1)=−3−1
Step 1.2.3.2
Subtract 11 from -3−3.
f(-1)=-4f(−1)=−4
f(-1)=-4f(−1)=−4
Step 1.2.4
The final answer is -4−4.
-4−4
-4−4
Step 1.3
Convert -4−4 to decimal.
y=-4y=−4
y=-4y=−4
Step 2
Step 2.1
Replace the variable xx with 00 in the expression.
f(0)=(0)3-2(0)2+0f(0)=(0)3−2(0)2+0
Step 2.2
Simplify the result.
Step 2.2.1
Remove parentheses.
f(0)=(0)3-2(0)2+0f(0)=(0)3−2(0)2+0
Step 2.2.2
Simplify each term.
Step 2.2.2.1
Raising 00 to any positive power yields 00.
f(0)=0-2(0)2+0f(0)=0−2(0)2+0
Step 2.2.2.2
Raising 00 to any positive power yields 00.
f(0)=0-2⋅0+0f(0)=0−2⋅0+0
Step 2.2.2.3
Multiply -2−2 by 00.
f(0)=0+0+0f(0)=0+0+0
f(0)=0+0+0f(0)=0+0+0
Step 2.2.3
Simplify by adding numbers.
Step 2.2.3.1
Add 00 and 00.
f(0)=0+0f(0)=0+0
Step 2.2.3.2
Add 00 and 00.
f(0)=0f(0)=0
f(0)=0f(0)=0
Step 2.2.4
The final answer is 00.
00
00
Step 2.3
Convert 00 to decimal.
y=0y=0
y=0y=0
Step 3
Step 3.1
Replace the variable xx with 22 in the expression.
f(2)=(2)3-2(2)2+2f(2)=(2)3−2(2)2+2
Step 3.2
Simplify the result.
Step 3.2.1
Remove parentheses.
f(2)=(2)3-2(2)2+2f(2)=(2)3−2(2)2+2
Step 3.2.2
Simplify each term.
Step 3.2.2.1
Raise 22 to the power of 33.
f(2)=8-2(2)2+2f(2)=8−2(2)2+2
Step 3.2.2.2
Raise 22 to the power of 22.
f(2)=8-2⋅4+2f(2)=8−2⋅4+2
Step 3.2.2.3
Multiply -2−2 by 44.
f(2)=8-8+2f(2)=8−8+2
f(2)=8-8+2f(2)=8−8+2
Step 3.2.3
Simplify by adding and subtracting.
Step 3.2.3.1
Subtract 88 from 88.
f(2)=0+2f(2)=0+2
Step 3.2.3.2
Add 00 and 22.
f(2)=2f(2)=2
f(2)=2f(2)=2
Step 3.2.4
The final answer is 22.
22
22
Step 3.3
Convert 22 to decimal.
y=2y=2
y=2y=2
Step 4
Step 4.1
Replace the variable xx with 33 in the expression.
f(3)=(3)3-2(3)2+3f(3)=(3)3−2(3)2+3
Step 4.2
Simplify the result.
Step 4.2.1
Remove parentheses.
f(3)=(3)3-2(3)2+3f(3)=(3)3−2(3)2+3
Step 4.2.2
Simplify each term.
Step 4.2.2.1
Raise 33 to the power of 33.
f(3)=27-2(3)2+3f(3)=27−2(3)2+3
Step 4.2.2.2
Raise 33 to the power of 22.
f(3)=27-2⋅9+3f(3)=27−2⋅9+3
Step 4.2.2.3
Multiply -2−2 by 99.
f(3)=27-18+3f(3)=27−18+3
f(3)=27-18+3f(3)=27−18+3
Step 4.2.3
Simplify by adding and subtracting.
Step 4.2.3.1
Subtract 1818 from 2727.
f(3)=9+3f(3)=9+3
Step 4.2.3.2
Add 99 and 33.
f(3)=12f(3)=12
f(3)=12f(3)=12
Step 4.2.4
The final answer is 1212.
1212
1212
Step 4.3
Convert 1212 to decimal.
y=12y=12
y=12y=12
Step 5
The cubic function can be graphed using the function behavior and the points.
xy-1-4001022312xy−1−4001022312
Step 6
The cubic function can be graphed using the function behavior and the selected points.
Falls to the left and rises to the right
xy-1-4001022312xy−1−4001022312
Step 7