Enter a problem...
Algebra Examples
Step 1
Since the radical is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 2
Subtract from both sides of the equation.
Step 3
Step 3.1
Apply the power rule and multiply exponents, .
Step 3.2
Cancel the common factor of .
Step 3.2.1
Cancel the common factor.
Step 3.2.2
Rewrite the expression.
Step 4
Step 4.1
Use to rewrite as .
Step 4.2
Factor out of .
Step 4.2.1
Multiply by .
Step 4.2.2
Factor out of .
Step 4.2.3
Factor out of .
Step 4.3
Rewrite as .
Step 4.4
Rewrite as .
Step 4.5
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 4.6
Factor.
Step 4.6.1
Simplify.
Step 4.6.1.1
Rewrite as .
Step 4.6.1.2
Rewrite as .
Step 4.6.1.3
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 4.6.1.4
Simplify.
Step 4.6.1.4.1
One to any power is one.
Step 4.6.1.4.2
Multiply by .
Step 4.6.1.4.3
Multiply the exponents in .
Step 4.6.1.4.3.1
Apply the power rule and multiply exponents, .
Step 4.6.1.4.3.2
Cancel the common factor of .
Step 4.6.1.4.3.2.1
Factor out of .
Step 4.6.1.4.3.2.2
Cancel the common factor.
Step 4.6.1.4.3.2.3
Rewrite the expression.
Step 4.6.1.4.4
Reorder terms.
Step 4.6.1.5
Multiply by .
Step 4.6.2
Remove unnecessary parentheses.
Step 4.7
Simplify each term.
Step 4.7.1
One to any power is one.
Step 4.7.2
Multiply the exponents in .
Step 4.7.2.1
Apply the power rule and multiply exponents, .
Step 4.7.2.2
Cancel the common factor of .
Step 4.7.2.2.1
Factor out of .
Step 4.7.2.2.2
Cancel the common factor.
Step 4.7.2.2.3
Rewrite the expression.
Step 4.8
Reorder terms.
Step 5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 6
Step 6.1
Set equal to .
Step 6.2
Solve for .
Step 6.2.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 6.2.2
Simplify the exponent.
Step 6.2.2.1
Simplify the left side.
Step 6.2.2.1.1
Simplify .
Step 6.2.2.1.1.1
Multiply the exponents in .
Step 6.2.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 6.2.2.1.1.1.2
Cancel the common factor of .
Step 6.2.2.1.1.1.2.1
Cancel the common factor.
Step 6.2.2.1.1.1.2.2
Rewrite the expression.
Step 6.2.2.1.1.1.3
Cancel the common factor of .
Step 6.2.2.1.1.1.3.1
Cancel the common factor.
Step 6.2.2.1.1.1.3.2
Rewrite the expression.
Step 6.2.2.1.1.2
Simplify.
Step 6.2.2.2
Simplify the right side.
Step 6.2.2.2.1
Simplify .
Step 6.2.2.2.1.1
Simplify the expression.
Step 6.2.2.2.1.1.1
Rewrite as .
Step 6.2.2.2.1.1.2
Apply the power rule and multiply exponents, .
Step 6.2.2.2.1.2
Cancel the common factor of .
Step 6.2.2.2.1.2.1
Cancel the common factor.
Step 6.2.2.2.1.2.2
Rewrite the expression.
Step 6.2.2.2.1.3
Raising to any positive power yields .
Step 7
Step 7.1
Set equal to .
Step 7.2
Solve for .
Step 7.2.1
Subtract from both sides of the equation.
Step 7.2.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 7.2.3
Simplify the exponent.
Step 7.2.3.1
Simplify the left side.
Step 7.2.3.1.1
Simplify .
Step 7.2.3.1.1.1
Apply the product rule to .
Step 7.2.3.1.1.2
Raise to the power of .
Step 7.2.3.1.1.3
Multiply by .
Step 7.2.3.1.1.4
Multiply the exponents in .
Step 7.2.3.1.1.4.1
Apply the power rule and multiply exponents, .
Step 7.2.3.1.1.4.2
Cancel the common factor of .
Step 7.2.3.1.1.4.2.1
Cancel the common factor.
Step 7.2.3.1.1.4.2.2
Rewrite the expression.
Step 7.2.3.1.1.5
Simplify.
Step 7.2.3.2
Simplify the right side.
Step 7.2.3.2.1
Raise to the power of .
Step 8
Step 8.1
Set equal to .
Step 8.2
Solve for .
Step 8.2.1
Find a common factor that is present in each term.
Step 8.2.2
Substitute for .
Step 8.2.3
Solve for .
Step 8.2.3.1
Multiply by by adding the exponents.
Step 8.2.3.1.1
Multiply by .
Step 8.2.3.1.1.1
Raise to the power of .
Step 8.2.3.1.1.2
Use the power rule to combine exponents.
Step 8.2.3.1.2
Add and .
Step 8.2.3.2
Subtract from both sides of the equation.
Step 8.2.3.3
Add to both sides of the equation.
Step 8.2.3.4
Factor the left side of the equation.
Step 8.2.3.4.1
Rewrite as .
Step 8.2.3.4.2
Since both terms are perfect cubes, factor using the sum of cubes formula, where and .
Step 8.2.3.4.3
Simplify.
Step 8.2.3.4.3.1
Multiply by .
Step 8.2.3.4.3.2
One to any power is one.
Step 8.2.3.5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 8.2.3.6
Set equal to and solve for .
Step 8.2.3.6.1
Set equal to .
Step 8.2.3.6.2
Subtract from both sides of the equation.
Step 8.2.3.7
Set equal to and solve for .
Step 8.2.3.7.1
Set equal to .
Step 8.2.3.7.2
Solve for .
Step 8.2.3.7.2.1
Use the quadratic formula to find the solutions.
Step 8.2.3.7.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 8.2.3.7.2.3
Simplify.
Step 8.2.3.7.2.3.1
Simplify the numerator.
Step 8.2.3.7.2.3.1.1
Raise to the power of .
Step 8.2.3.7.2.3.1.2
Multiply .
Step 8.2.3.7.2.3.1.2.1
Multiply by .
Step 8.2.3.7.2.3.1.2.2
Multiply by .
Step 8.2.3.7.2.3.1.3
Subtract from .
Step 8.2.3.7.2.3.1.4
Rewrite as .
Step 8.2.3.7.2.3.1.5
Rewrite as .
Step 8.2.3.7.2.3.1.6
Rewrite as .
Step 8.2.3.7.2.3.2
Multiply by .
Step 8.2.3.7.2.4
The final answer is the combination of both solutions.
Step 8.2.3.8
The final solution is all the values that make true.
Step 8.2.4
Substitute for .
Step 8.2.5
Solve for for .
Step 8.2.5.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 8.2.5.2
Simplify the exponent.
Step 8.2.5.2.1
Simplify the left side.
Step 8.2.5.2.1.1
Simplify .
Step 8.2.5.2.1.1.1
Multiply the exponents in .
Step 8.2.5.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 8.2.5.2.1.1.1.2
Cancel the common factor of .
Step 8.2.5.2.1.1.1.2.1
Cancel the common factor.
Step 8.2.5.2.1.1.1.2.2
Rewrite the expression.
Step 8.2.5.2.1.1.2
Simplify.
Step 8.2.5.2.2
Simplify the right side.
Step 8.2.5.2.2.1
Raise to the power of .
Step 8.2.6
Solve for for .
Step 8.2.6.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 8.2.6.2
Simplify the exponent.
Step 8.2.6.2.1
Simplify the left side.
Step 8.2.6.2.1.1
Simplify .
Step 8.2.6.2.1.1.1
Multiply the exponents in .
Step 8.2.6.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 8.2.6.2.1.1.1.2
Cancel the common factor of .
Step 8.2.6.2.1.1.1.2.1
Cancel the common factor.
Step 8.2.6.2.1.1.1.2.2
Rewrite the expression.
Step 8.2.6.2.1.1.2
Simplify.
Step 8.2.6.2.2
Simplify the right side.
Step 8.2.6.2.2.1
Simplify .
Step 8.2.6.2.2.1.1
Simplify the expression.
Step 8.2.6.2.2.1.1.1
Apply the product rule to .
Step 8.2.6.2.2.1.1.2
Raise to the power of .
Step 8.2.6.2.2.1.2
Use the Binomial Theorem.
Step 8.2.6.2.2.1.3
Simplify terms.
Step 8.2.6.2.2.1.3.1
Simplify each term.
Step 8.2.6.2.2.1.3.1.1
One to any power is one.
Step 8.2.6.2.2.1.3.1.2
One to any power is one.
Step 8.2.6.2.2.1.3.1.3
Multiply by .
Step 8.2.6.2.2.1.3.1.4
One to any power is one.
Step 8.2.6.2.2.1.3.1.5
Multiply by .
Step 8.2.6.2.2.1.3.1.6
Apply the product rule to .
Step 8.2.6.2.2.1.3.1.7
Rewrite as .
Step 8.2.6.2.2.1.3.1.8
Rewrite as .
Step 8.2.6.2.2.1.3.1.8.1
Use to rewrite as .
Step 8.2.6.2.2.1.3.1.8.2
Apply the power rule and multiply exponents, .
Step 8.2.6.2.2.1.3.1.8.3
Combine and .
Step 8.2.6.2.2.1.3.1.8.4
Cancel the common factor of .
Step 8.2.6.2.2.1.3.1.8.4.1
Cancel the common factor.
Step 8.2.6.2.2.1.3.1.8.4.2
Rewrite the expression.
Step 8.2.6.2.2.1.3.1.8.5
Evaluate the exponent.
Step 8.2.6.2.2.1.3.1.9
Multiply .
Step 8.2.6.2.2.1.3.1.9.1
Multiply by .
Step 8.2.6.2.2.1.3.1.9.2
Multiply by .
Step 8.2.6.2.2.1.3.1.10
Multiply by .
Step 8.2.6.2.2.1.3.1.11
Apply the product rule to .
Step 8.2.6.2.2.1.3.1.12
Factor out .
Step 8.2.6.2.2.1.3.1.13
Rewrite as .
Step 8.2.6.2.2.1.3.1.14
Rewrite as .
Step 8.2.6.2.2.1.3.1.15
Rewrite as .
Step 8.2.6.2.2.1.3.1.16
Raise to the power of .
Step 8.2.6.2.2.1.3.1.17
Rewrite as .
Step 8.2.6.2.2.1.3.1.17.1
Factor out of .
Step 8.2.6.2.2.1.3.1.17.2
Rewrite as .
Step 8.2.6.2.2.1.3.1.18
Pull terms out from under the radical.
Step 8.2.6.2.2.1.3.1.19
Multiply by .
Step 8.2.6.2.2.1.3.1.20
Multiply by .
Step 8.2.6.2.2.1.3.1.21
Apply the product rule to .
Step 8.2.6.2.2.1.3.1.22
Rewrite as .
Step 8.2.6.2.2.1.3.1.22.1
Rewrite as .
Step 8.2.6.2.2.1.3.1.22.2
Rewrite as .
Step 8.2.6.2.2.1.3.1.22.3
Raise to the power of .
Step 8.2.6.2.2.1.3.1.23
Multiply by .
Step 8.2.6.2.2.1.3.1.24
Rewrite as .
Step 8.2.6.2.2.1.3.1.24.1
Use to rewrite as .
Step 8.2.6.2.2.1.3.1.24.2
Apply the power rule and multiply exponents, .
Step 8.2.6.2.2.1.3.1.24.3
Combine and .
Step 8.2.6.2.2.1.3.1.24.4
Cancel the common factor of and .
Step 8.2.6.2.2.1.3.1.24.4.1
Factor out of .
Step 8.2.6.2.2.1.3.1.24.4.2
Cancel the common factors.
Step 8.2.6.2.2.1.3.1.24.4.2.1
Factor out of .
Step 8.2.6.2.2.1.3.1.24.4.2.2
Cancel the common factor.
Step 8.2.6.2.2.1.3.1.24.4.2.3
Rewrite the expression.
Step 8.2.6.2.2.1.3.1.24.4.2.4
Divide by .
Step 8.2.6.2.2.1.3.1.25
Raise to the power of .
Step 8.2.6.2.2.1.3.2
Simplify terms.
Step 8.2.6.2.2.1.3.2.1
Subtract from .
Step 8.2.6.2.2.1.3.2.2
Subtract from .
Step 8.2.6.2.2.1.3.2.3
Simplify the expression.
Step 8.2.6.2.2.1.3.2.3.1
Add and .
Step 8.2.6.2.2.1.3.2.3.2
Reorder and .
Step 8.2.6.2.2.1.3.2.4
Cancel the common factor of and .
Step 8.2.6.2.2.1.3.2.4.1
Factor out of .
Step 8.2.6.2.2.1.3.2.4.2
Factor out of .
Step 8.2.6.2.2.1.3.2.4.3
Factor out of .
Step 8.2.6.2.2.1.3.2.4.4
Cancel the common factors.
Step 8.2.6.2.2.1.3.2.4.4.1
Factor out of .
Step 8.2.6.2.2.1.3.2.4.4.2
Cancel the common factor.
Step 8.2.6.2.2.1.3.2.4.4.3
Rewrite the expression.
Step 8.2.6.2.2.1.3.2.5
Rewrite as .
Step 8.2.6.2.2.1.3.2.6
Factor out of .
Step 8.2.6.2.2.1.3.2.7
Factor out of .
Step 8.2.6.2.2.1.3.2.8
Move the negative in front of the fraction.
Step 8.2.7
Solve for for .
Step 8.2.7.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 8.2.7.2
Simplify the exponent.
Step 8.2.7.2.1
Simplify the left side.
Step 8.2.7.2.1.1
Simplify .
Step 8.2.7.2.1.1.1
Multiply the exponents in .
Step 8.2.7.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 8.2.7.2.1.1.1.2
Cancel the common factor of .
Step 8.2.7.2.1.1.1.2.1
Cancel the common factor.
Step 8.2.7.2.1.1.1.2.2
Rewrite the expression.
Step 8.2.7.2.1.1.2
Simplify.
Step 8.2.7.2.2
Simplify the right side.
Step 8.2.7.2.2.1
Simplify .
Step 8.2.7.2.2.1.1
Simplify the expression.
Step 8.2.7.2.2.1.1.1
Apply the product rule to .
Step 8.2.7.2.2.1.1.2
Raise to the power of .
Step 8.2.7.2.2.1.2
Use the Binomial Theorem.
Step 8.2.7.2.2.1.3
Simplify terms.
Step 8.2.7.2.2.1.3.1
Simplify each term.
Step 8.2.7.2.2.1.3.1.1
One to any power is one.
Step 8.2.7.2.2.1.3.1.2
One to any power is one.
Step 8.2.7.2.2.1.3.1.3
Multiply by .
Step 8.2.7.2.2.1.3.1.4
Multiply by .
Step 8.2.7.2.2.1.3.1.5
One to any power is one.
Step 8.2.7.2.2.1.3.1.6
Multiply by .
Step 8.2.7.2.2.1.3.1.7
Use the power rule to distribute the exponent.
Step 8.2.7.2.2.1.3.1.7.1
Apply the product rule to .
Step 8.2.7.2.2.1.3.1.7.2
Apply the product rule to .
Step 8.2.7.2.2.1.3.1.8
Raise to the power of .
Step 8.2.7.2.2.1.3.1.9
Multiply by .
Step 8.2.7.2.2.1.3.1.10
Rewrite as .
Step 8.2.7.2.2.1.3.1.11
Rewrite as .
Step 8.2.7.2.2.1.3.1.11.1
Use to rewrite as .
Step 8.2.7.2.2.1.3.1.11.2
Apply the power rule and multiply exponents, .
Step 8.2.7.2.2.1.3.1.11.3
Combine and .
Step 8.2.7.2.2.1.3.1.11.4
Cancel the common factor of .
Step 8.2.7.2.2.1.3.1.11.4.1
Cancel the common factor.
Step 8.2.7.2.2.1.3.1.11.4.2
Rewrite the expression.
Step 8.2.7.2.2.1.3.1.11.5
Evaluate the exponent.
Step 8.2.7.2.2.1.3.1.12
Multiply .
Step 8.2.7.2.2.1.3.1.12.1
Multiply by .
Step 8.2.7.2.2.1.3.1.12.2
Multiply by .
Step 8.2.7.2.2.1.3.1.13
Multiply by .
Step 8.2.7.2.2.1.3.1.14
Use the power rule to distribute the exponent.
Step 8.2.7.2.2.1.3.1.14.1
Apply the product rule to .
Step 8.2.7.2.2.1.3.1.14.2
Apply the product rule to .
Step 8.2.7.2.2.1.3.1.15
Raise to the power of .
Step 8.2.7.2.2.1.3.1.16
Factor out .
Step 8.2.7.2.2.1.3.1.17
Rewrite as .
Step 8.2.7.2.2.1.3.1.18
Rewrite as .
Step 8.2.7.2.2.1.3.1.19
Multiply by .
Step 8.2.7.2.2.1.3.1.20
Multiply by .
Step 8.2.7.2.2.1.3.1.21
Rewrite as .
Step 8.2.7.2.2.1.3.1.22
Raise to the power of .
Step 8.2.7.2.2.1.3.1.23
Rewrite as .
Step 8.2.7.2.2.1.3.1.23.1
Factor out of .
Step 8.2.7.2.2.1.3.1.23.2
Rewrite as .
Step 8.2.7.2.2.1.3.1.24
Pull terms out from under the radical.
Step 8.2.7.2.2.1.3.1.25
Move to the left of .
Step 8.2.7.2.2.1.3.1.26
Multiply by .
Step 8.2.7.2.2.1.3.1.27
Use the power rule to distribute the exponent.
Step 8.2.7.2.2.1.3.1.27.1
Apply the product rule to .
Step 8.2.7.2.2.1.3.1.27.2
Apply the product rule to .
Step 8.2.7.2.2.1.3.1.28
Raise to the power of .
Step 8.2.7.2.2.1.3.1.29
Multiply by .
Step 8.2.7.2.2.1.3.1.30
Rewrite as .
Step 8.2.7.2.2.1.3.1.30.1
Rewrite as .
Step 8.2.7.2.2.1.3.1.30.2
Rewrite as .
Step 8.2.7.2.2.1.3.1.30.3
Raise to the power of .
Step 8.2.7.2.2.1.3.1.31
Multiply by .
Step 8.2.7.2.2.1.3.1.32
Rewrite as .
Step 8.2.7.2.2.1.3.1.32.1
Use to rewrite as .
Step 8.2.7.2.2.1.3.1.32.2
Apply the power rule and multiply exponents, .
Step 8.2.7.2.2.1.3.1.32.3
Combine and .
Step 8.2.7.2.2.1.3.1.32.4
Cancel the common factor of and .
Step 8.2.7.2.2.1.3.1.32.4.1
Factor out of .
Step 8.2.7.2.2.1.3.1.32.4.2
Cancel the common factors.
Step 8.2.7.2.2.1.3.1.32.4.2.1
Factor out of .
Step 8.2.7.2.2.1.3.1.32.4.2.2
Cancel the common factor.
Step 8.2.7.2.2.1.3.1.32.4.2.3
Rewrite the expression.
Step 8.2.7.2.2.1.3.1.32.4.2.4
Divide by .
Step 8.2.7.2.2.1.3.1.33
Raise to the power of .
Step 8.2.7.2.2.1.3.2
Simplify terms.
Step 8.2.7.2.2.1.3.2.1
Subtract from .
Step 8.2.7.2.2.1.3.2.2
Add and .
Step 8.2.7.2.2.1.3.2.3
Simplify the expression.
Step 8.2.7.2.2.1.3.2.3.1
Add and .
Step 8.2.7.2.2.1.3.2.3.2
Reorder and .
Step 8.2.7.2.2.1.3.2.4
Cancel the common factor of and .
Step 8.2.7.2.2.1.3.2.4.1
Factor out of .
Step 8.2.7.2.2.1.3.2.4.2
Factor out of .
Step 8.2.7.2.2.1.3.2.4.3
Factor out of .
Step 8.2.7.2.2.1.3.2.4.4
Cancel the common factors.
Step 8.2.7.2.2.1.3.2.4.4.1
Factor out of .
Step 8.2.7.2.2.1.3.2.4.4.2
Cancel the common factor.
Step 8.2.7.2.2.1.3.2.4.4.3
Rewrite the expression.
Step 8.2.7.2.2.1.3.2.5
Rewrite as .
Step 8.2.7.2.2.1.3.2.6
Factor out of .
Step 8.2.7.2.2.1.3.2.7
Factor out of .
Step 8.2.7.2.2.1.3.2.8
Move the negative in front of the fraction.
Step 8.2.8
List all of the solutions.
Step 9
Step 9.1
Set equal to .
Step 9.2
Solve for .
Step 9.2.1
Find a common factor that is present in each term.
Step 9.2.2
Substitute for .
Step 9.2.3
Solve for .
Step 9.2.3.1
Multiply by by adding the exponents.
Step 9.2.3.1.1
Multiply by .
Step 9.2.3.1.1.1
Raise to the power of .
Step 9.2.3.1.1.2
Use the power rule to combine exponents.
Step 9.2.3.1.2
Add and .
Step 9.2.3.2
Subtract from both sides of the equation.
Step 9.2.3.3
Add to both sides of the equation.
Step 9.2.3.4
Factor the left side of the equation.
Step 9.2.3.4.1
Rewrite as .
Step 9.2.3.4.2
Since both terms are perfect cubes, factor using the sum of cubes formula, where and .
Step 9.2.3.4.3
Simplify.
Step 9.2.3.4.3.1
Multiply by .
Step 9.2.3.4.3.2
One to any power is one.
Step 9.2.3.5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 9.2.3.6
Set equal to and solve for .
Step 9.2.3.6.1
Set equal to .
Step 9.2.3.6.2
Subtract from both sides of the equation.
Step 9.2.3.7
Set equal to and solve for .
Step 9.2.3.7.1
Set equal to .
Step 9.2.3.7.2
Solve for .
Step 9.2.3.7.2.1
Use the quadratic formula to find the solutions.
Step 9.2.3.7.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 9.2.3.7.2.3
Simplify.
Step 9.2.3.7.2.3.1
Simplify the numerator.
Step 9.2.3.7.2.3.1.1
Raise to the power of .
Step 9.2.3.7.2.3.1.2
Multiply .
Step 9.2.3.7.2.3.1.2.1
Multiply by .
Step 9.2.3.7.2.3.1.2.2
Multiply by .
Step 9.2.3.7.2.3.1.3
Subtract from .
Step 9.2.3.7.2.3.1.4
Rewrite as .
Step 9.2.3.7.2.3.1.5
Rewrite as .
Step 9.2.3.7.2.3.1.6
Rewrite as .
Step 9.2.3.7.2.3.2
Multiply by .
Step 9.2.3.7.2.4
The final answer is the combination of both solutions.
Step 9.2.3.8
The final solution is all the values that make true.
Step 9.2.4
Substitute for .
Step 9.2.5
Solve for for .
Step 9.2.5.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 9.2.5.2
Simplify the exponent.
Step 9.2.5.2.1
Simplify the left side.
Step 9.2.5.2.1.1
Simplify .
Step 9.2.5.2.1.1.1
Multiply the exponents in .
Step 9.2.5.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 9.2.5.2.1.1.1.2
Cancel the common factor of .
Step 9.2.5.2.1.1.1.2.1
Cancel the common factor.
Step 9.2.5.2.1.1.1.2.2
Rewrite the expression.
Step 9.2.5.2.1.1.1.3
Cancel the common factor of .
Step 9.2.5.2.1.1.1.3.1
Cancel the common factor.
Step 9.2.5.2.1.1.1.3.2
Rewrite the expression.
Step 9.2.5.2.1.1.2
Simplify.
Step 9.2.5.2.2
Simplify the right side.
Step 9.2.5.2.2.1
Simplify .
Step 9.2.5.2.2.1.1
Simplify the expression.
Step 9.2.5.2.2.1.1.1
Rewrite as .
Step 9.2.5.2.2.1.1.2
Apply the power rule and multiply exponents, .
Step 9.2.5.2.2.1.2
Cancel the common factor of .
Step 9.2.5.2.2.1.2.1
Cancel the common factor.
Step 9.2.5.2.2.1.2.2
Rewrite the expression.
Step 9.2.5.2.2.1.3
Raise to the power of .
Step 9.2.6
Solve for for .
Step 9.2.6.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 9.2.6.2
Simplify the exponent.
Step 9.2.6.2.1
Simplify the left side.
Step 9.2.6.2.1.1
Simplify .
Step 9.2.6.2.1.1.1
Multiply the exponents in .
Step 9.2.6.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 9.2.6.2.1.1.1.2
Cancel the common factor of .
Step 9.2.6.2.1.1.1.2.1
Cancel the common factor.
Step 9.2.6.2.1.1.1.2.2
Rewrite the expression.
Step 9.2.6.2.1.1.1.3
Cancel the common factor of .
Step 9.2.6.2.1.1.1.3.1
Cancel the common factor.
Step 9.2.6.2.1.1.1.3.2
Rewrite the expression.
Step 9.2.6.2.1.1.2
Simplify.
Step 9.2.6.2.2
Simplify the right side.
Step 9.2.6.2.2.1
Apply the product rule to .
Step 9.2.7
Solve for for .
Step 9.2.7.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 9.2.7.2
Simplify the exponent.
Step 9.2.7.2.1
Simplify the left side.
Step 9.2.7.2.1.1
Simplify .
Step 9.2.7.2.1.1.1
Multiply the exponents in .
Step 9.2.7.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 9.2.7.2.1.1.1.2
Cancel the common factor of .
Step 9.2.7.2.1.1.1.2.1
Cancel the common factor.
Step 9.2.7.2.1.1.1.2.2
Rewrite the expression.
Step 9.2.7.2.1.1.1.3
Cancel the common factor of .
Step 9.2.7.2.1.1.1.3.1
Cancel the common factor.
Step 9.2.7.2.1.1.1.3.2
Rewrite the expression.
Step 9.2.7.2.1.1.2
Simplify.
Step 9.2.7.2.2
Simplify the right side.
Step 9.2.7.2.2.1
Apply the product rule to .
Step 9.2.8
List all of the solutions.
Step 10
The final solution is all the values that make true.