Algebra Examples

Graph y-5=f(x/-1)
y-5=f(x-1)y5=f(x1)
Step 1
Find the standard form of the hyperbola.
Tap for more steps...
Step 1.1
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 1.1.1
Subtract f(x-1)f(x1) from both sides of the equation.
y-5-fx-1=0y5fx1=0
Step 1.1.2
Simplify each term.
Tap for more steps...
Step 1.1.2.1
Move the negative one from the denominator of x-1x1.
y-5-f(-1x)=0y5f(1x)=0
Step 1.1.2.2
Rewrite -1x1x as -xx.
y-5-f(-x)=0y5f(x)=0
Step 1.1.2.3
Rewrite using the commutative property of multiplication.
y-5-1-1fx=0y511fx=0
Step 1.1.2.4
Multiply -11 by -11.
y-5+1fx=0y5+1fx=0
Step 1.1.2.5
Multiply ff by 11.
y-5+fx=0y5+fx=0
y-5+fx=0y5+fx=0
Step 1.1.3
Move -55.
y+fx-5=0y+fx5=0
Step 1.1.4
Reorder yy and fxfx.
fx+y-5=0fx+y5=0
fx+y-5=0fx+y5=0
Step 1.2
Add 55 to both sides of the equation.
fx+y=5fx+y=5
Step 1.3
Divide each term by 55 to make the right side equal to one.
fx5+y5=55fx5+y5=55
Step 1.4
Simplify each term in the equation in order to set the right side equal to 11. The standard form of an ellipse or hyperbola requires the right side of the equation be 11.
fx5+y5=1fx5+y5=1
fx5+y5=1fx5+y5=1
Step 2
This is the form of a hyperbola. Use this form to determine the values used to find vertices and asymptotes of the hyperbola.
(x-h)2a2-(y-k)2b2=1(xh)2a2(yk)2b2=1
Step 3
Match the values in this hyperbola to those of the standard form. The variable hh represents the x-offset from the origin, kk represents the y-offset from origin, aa.
a=5a=5
b=5b=5
k=0k=0
h=0h=0
Step 4
The center of a hyperbola follows the form of (h,k)(h,k). Substitute in the values of hh and kk.
(0,0)(0,0)
Step 5
Find cc, the distance from the center to a focus.
Tap for more steps...
Step 5.1
Find the distance from the center to a focus of the hyperbola by using the following formula.
a2+b2a2+b2
Step 5.2
Substitute the values of aa and bb in the formula.
(5)2+(5)2(5)2+(5)2
Step 5.3
Simplify.
Tap for more steps...
Step 5.3.1
Rewrite 5252 as 55.
Tap for more steps...
Step 5.3.1.1
Use nax=axnnax=axn to rewrite 55 as 512512.
(512)2+(5)2(512)2+(5)2
Step 5.3.1.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
5122+(5)25122+(5)2
Step 5.3.1.3
Combine 1212 and 22.
522+(5)2522+(5)2
Step 5.3.1.4
Cancel the common factor of 22.
Tap for more steps...
Step 5.3.1.4.1
Cancel the common factor.
522+(5)2
Step 5.3.1.4.2
Rewrite the expression.
51+(5)2
51+(5)2
Step 5.3.1.5
Evaluate the exponent.
5+(5)2
5+(5)2
Step 5.3.2
Rewrite 52 as 5.
Tap for more steps...
Step 5.3.2.1
Use nax=axn to rewrite 5 as 512.
5+(512)2
Step 5.3.2.2
Apply the power rule and multiply exponents, (am)n=amn.
5+5122
Step 5.3.2.3
Combine 12 and 2.
5+522
Step 5.3.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.2.4.1
Cancel the common factor.
5+522
Step 5.3.2.4.2
Rewrite the expression.
5+51
5+51
Step 5.3.2.5
Evaluate the exponent.
5+5
5+5
Step 5.3.3
Add 5 and 5.
10
10
10
Step 6
Find the vertices.
Tap for more steps...
Step 6.1
The first vertex of a hyperbola can be found by adding a to h.
(h+a,k)
Step 6.2
Substitute the known values of h, a, and k into the formula and simplify.
(5,0)
Step 6.3
The second vertex of a hyperbola can be found by subtracting a from h.
(h-a,k)
Step 6.4
Substitute the known values of h, a, and k into the formula and simplify.
(-5,0)
Step 6.5
The vertices of a hyperbola follow the form of (h±a,k). Hyperbolas have two vertices.
(5,0),(-5,0)
(5,0),(-5,0)
Step 7
Find the foci.
Tap for more steps...
Step 7.1
The first focus of a hyperbola can be found by adding c to h.
(h+c,k)
Step 7.2
Substitute the known values of h, c, and k into the formula and simplify.
(10,0)
Step 7.3
The second focus of a hyperbola can be found by subtracting c from h.
(h-c,k)
Step 7.4
Substitute the known values of h, c, and k into the formula and simplify.
(-10,0)
Step 7.5
The foci of a hyperbola follow the form of (h±a2+b2,k). Hyperbolas have two foci.
(10,0),(-10,0)
(10,0),(-10,0)
Step 8
Find the eccentricity.
Tap for more steps...
Step 8.1
Find the eccentricity by using the following formula.
a2+b2a
Step 8.2
Substitute the values of a and b into the formula.
(5)2+(5)25
Step 8.3
Simplify.
Tap for more steps...
Step 8.3.1
Simplify the numerator.
Tap for more steps...
Step 8.3.1.1
Rewrite 52 as 5.
Tap for more steps...
Step 8.3.1.1.1
Use nax=axn to rewrite 5 as 512.
(512)2+525
Step 8.3.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
5122+525
Step 8.3.1.1.3
Combine 12 and 2.
522+525
Step 8.3.1.1.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.3.1.1.4.1
Cancel the common factor.
522+525
Step 8.3.1.1.4.2
Rewrite the expression.
51+525
51+525
Step 8.3.1.1.5
Evaluate the exponent.
5+525
5+525
Step 8.3.1.2
Rewrite 52 as 5.
Tap for more steps...
Step 8.3.1.2.1
Use nax=axn to rewrite 5 as 512.
5+(512)25
Step 8.3.1.2.2
Apply the power rule and multiply exponents, (am)n=amn.
5+51225
Step 8.3.1.2.3
Combine 12 and 2.
5+5225
Step 8.3.1.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.3.1.2.4.1
Cancel the common factor.
5+5225
Step 8.3.1.2.4.2
Rewrite the expression.
5+515
5+515
Step 8.3.1.2.5
Evaluate the exponent.
5+55
5+55
Step 8.3.1.3
Add 5 and 5.
105
105
Step 8.3.2
Combine 10 and 5 into a single radical.
105
Step 8.3.3
Divide 10 by 5.
2
2
2
Step 9
Find the focal parameter.
Tap for more steps...
Step 9.1
Find the value of the focal parameter of the hyperbola by using the following formula.
b2a2+b2
Step 9.2
Substitute the values of b and a2+b2 in the formula.
5210
Step 9.3
Simplify.
Tap for more steps...
Step 9.3.1
Rewrite 52 as 5.
Tap for more steps...
Step 9.3.1.1
Use nax=axn to rewrite 5 as 512.
(512)210
Step 9.3.1.2
Apply the power rule and multiply exponents, (am)n=amn.
512210
Step 9.3.1.3
Combine 12 and 2.
52210
Step 9.3.1.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.3.1.4.1
Cancel the common factor.
52210
Step 9.3.1.4.2
Rewrite the expression.
5110
5110
Step 9.3.1.5
Evaluate the exponent.
510
510
Step 9.3.2
Multiply 510 by 1010.
5101010
Step 9.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 9.3.3.1
Multiply 510 by 1010.
5101010
Step 9.3.3.2
Raise 10 to the power of 1.
51010110
Step 9.3.3.3
Raise 10 to the power of 1.
510101101
Step 9.3.3.4
Use the power rule aman=am+n to combine exponents.
510101+1
Step 9.3.3.5
Add 1 and 1.
510102
Step 9.3.3.6
Rewrite 102 as 10.
Tap for more steps...
Step 9.3.3.6.1
Use nax=axn to rewrite 10 as 1012.
510(1012)2
Step 9.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
51010122
Step 9.3.3.6.3
Combine 12 and 2.
5101022
Step 9.3.3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.3.3.6.4.1
Cancel the common factor.
5101022
Step 9.3.3.6.4.2
Rewrite the expression.
510101
510101
Step 9.3.3.6.5
Evaluate the exponent.
51010
51010
51010
Step 9.3.4
Cancel the common factor of 5 and 10.
Tap for more steps...
Step 9.3.4.1
Factor 5 out of 510.
5(10)10
Step 9.3.4.2
Cancel the common factors.
Tap for more steps...
Step 9.3.4.2.1
Factor 5 out of 10.
51052
Step 9.3.4.2.2
Cancel the common factor.
51052
Step 9.3.4.2.3
Rewrite the expression.
102
102
102
102
102
Step 10
The asymptotes follow the form y=±b(x-h)a+k because this hyperbola opens left and right.
y=±1x+0
Step 11
Simplify 1x+0.
Tap for more steps...
Step 11.1
Add 1x and 0.
y=1x
Step 11.2
Multiply x by 1.
y=x
y=x
Step 12
Simplify -1x+0.
Tap for more steps...
Step 12.1
Add -1x and 0.
y=-1x
Step 12.2
Rewrite -1x as -x.
y=-x
y=-x
Step 13
This hyperbola has two asymptotes.
y=x,y=-x
Step 14
These values represent the important values for graphing and analyzing a hyperbola.
Center: (0,0)
Vertices: (5,0),(-5,0)
Foci: (10,0),(-10,0)
Eccentricity: 2
Focal Parameter: 102
Asymptotes: y=x, y=-x
Step 15
 [x2  12  π  xdx ]