Enter a problem...
Algebra Examples
y-5=f(x-1)y−5=f(x−1)
Step 1
Step 1.1
Move all terms containing variables to the left side of the equation.
Step 1.1.1
Subtract f(x-1)f(x−1) from both sides of the equation.
y-5-fx-1=0y−5−fx−1=0
Step 1.1.2
Simplify each term.
Step 1.1.2.1
Move the negative one from the denominator of x-1x−1.
y-5-f(-1⋅x)=0y−5−f(−1⋅x)=0
Step 1.1.2.2
Rewrite -1⋅x−1⋅x as -x−x.
y-5-f(-x)=0y−5−f(−x)=0
Step 1.1.2.3
Rewrite using the commutative property of multiplication.
y-5-1⋅-1fx=0y−5−1⋅−1fx=0
Step 1.1.2.4
Multiply -1−1 by -1−1.
y-5+1fx=0y−5+1fx=0
Step 1.1.2.5
Multiply ff by 11.
y-5+fx=0y−5+fx=0
y-5+fx=0y−5+fx=0
Step 1.1.3
Move -5−5.
y+fx-5=0y+fx−5=0
Step 1.1.4
Reorder yy and fxfx.
fx+y-5=0fx+y−5=0
fx+y-5=0fx+y−5=0
Step 1.2
Add 55 to both sides of the equation.
fx+y=5fx+y=5
Step 1.3
Divide each term by 55 to make the right side equal to one.
fx5+y5=55fx5+y5=55
Step 1.4
Simplify each term in the equation in order to set the right side equal to 11. The standard form of an ellipse or hyperbola requires the right side of the equation be 11.
fx5+y5=1fx5+y5=1
fx5+y5=1fx5+y5=1
Step 2
This is the form of a hyperbola. Use this form to determine the values used to find vertices and asymptotes of the hyperbola.
(x-h)2a2-(y-k)2b2=1(x−h)2a2−(y−k)2b2=1
Step 3
Match the values in this hyperbola to those of the standard form. The variable hh represents the x-offset from the origin, kk represents the y-offset from origin, aa.
a=√5a=√5
b=√5b=√5
k=0k=0
h=0h=0
Step 4
The center of a hyperbola follows the form of (h,k)(h,k). Substitute in the values of hh and kk.
(0,0)(0,0)
Step 5
Step 5.1
Find the distance from the center to a focus of the hyperbola by using the following formula.
√a2+b2√a2+b2
Step 5.2
Substitute the values of aa and bb in the formula.
√(√5)2+(√5)2√(√5)2+(√5)2
Step 5.3
Simplify.
Step 5.3.1
Rewrite √52√52 as 55.
Step 5.3.1.1
Use n√ax=axnn√ax=axn to rewrite √5√5 as 512512.
√(512)2+(√5)2√(512)2+(√5)2
Step 5.3.1.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
√512⋅2+(√5)2√512⋅2+(√5)2
Step 5.3.1.3
Combine 1212 and 22.
√522+(√5)2√522+(√5)2
Step 5.3.1.4
Cancel the common factor of 22.
Step 5.3.1.4.1
Cancel the common factor.
√522+(√5)2
Step 5.3.1.4.2
Rewrite the expression.
√51+(√5)2
√51+(√5)2
Step 5.3.1.5
Evaluate the exponent.
√5+(√5)2
√5+(√5)2
Step 5.3.2
Rewrite √52 as 5.
Step 5.3.2.1
Use n√ax=axn to rewrite √5 as 512.
√5+(512)2
Step 5.3.2.2
Apply the power rule and multiply exponents, (am)n=amn.
√5+512⋅2
Step 5.3.2.3
Combine 12 and 2.
√5+522
Step 5.3.2.4
Cancel the common factor of 2.
Step 5.3.2.4.1
Cancel the common factor.
√5+522
Step 5.3.2.4.2
Rewrite the expression.
√5+51
√5+51
Step 5.3.2.5
Evaluate the exponent.
√5+5
√5+5
Step 5.3.3
Add 5 and 5.
√10
√10
√10
Step 6
Step 6.1
The first vertex of a hyperbola can be found by adding a to h.
(h+a,k)
Step 6.2
Substitute the known values of h, a, and k into the formula and simplify.
(√5,0)
Step 6.3
The second vertex of a hyperbola can be found by subtracting a from h.
(h-a,k)
Step 6.4
Substitute the known values of h, a, and k into the formula and simplify.
(-√5,0)
Step 6.5
The vertices of a hyperbola follow the form of (h±a,k). Hyperbolas have two vertices.
(√5,0),(-√5,0)
(√5,0),(-√5,0)
Step 7
Step 7.1
The first focus of a hyperbola can be found by adding c to h.
(h+c,k)
Step 7.2
Substitute the known values of h, c, and k into the formula and simplify.
(√10,0)
Step 7.3
The second focus of a hyperbola can be found by subtracting c from h.
(h-c,k)
Step 7.4
Substitute the known values of h, c, and k into the formula and simplify.
(-√10,0)
Step 7.5
The foci of a hyperbola follow the form of (h±√a2+b2,k). Hyperbolas have two foci.
(√10,0),(-√10,0)
(√10,0),(-√10,0)
Step 8
Step 8.1
Find the eccentricity by using the following formula.
√a2+b2a
Step 8.2
Substitute the values of a and b into the formula.
√(√5)2+(√5)2√5
Step 8.3
Simplify.
Step 8.3.1
Simplify the numerator.
Step 8.3.1.1
Rewrite √52 as 5.
Step 8.3.1.1.1
Use n√ax=axn to rewrite √5 as 512.
√(512)2+√52√5
Step 8.3.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
√512⋅2+√52√5
Step 8.3.1.1.3
Combine 12 and 2.
√522+√52√5
Step 8.3.1.1.4
Cancel the common factor of 2.
Step 8.3.1.1.4.1
Cancel the common factor.
√522+√52√5
Step 8.3.1.1.4.2
Rewrite the expression.
√51+√52√5
√51+√52√5
Step 8.3.1.1.5
Evaluate the exponent.
√5+√52√5
√5+√52√5
Step 8.3.1.2
Rewrite √52 as 5.
Step 8.3.1.2.1
Use n√ax=axn to rewrite √5 as 512.
√5+(512)2√5
Step 8.3.1.2.2
Apply the power rule and multiply exponents, (am)n=amn.
√5+512⋅2√5
Step 8.3.1.2.3
Combine 12 and 2.
√5+522√5
Step 8.3.1.2.4
Cancel the common factor of 2.
Step 8.3.1.2.4.1
Cancel the common factor.
√5+522√5
Step 8.3.1.2.4.2
Rewrite the expression.
√5+51√5
√5+51√5
Step 8.3.1.2.5
Evaluate the exponent.
√5+5√5
√5+5√5
Step 8.3.1.3
Add 5 and 5.
√10√5
√10√5
Step 8.3.2
Combine √10 and √5 into a single radical.
√105
Step 8.3.3
Divide 10 by 5.
√2
√2
√2
Step 9
Step 9.1
Find the value of the focal parameter of the hyperbola by using the following formula.
b2√a2+b2
Step 9.2
Substitute the values of b and √a2+b2 in the formula.
√52√10
Step 9.3
Simplify.
Step 9.3.1
Rewrite √52 as 5.
Step 9.3.1.1
Use n√ax=axn to rewrite √5 as 512.
(512)2√10
Step 9.3.1.2
Apply the power rule and multiply exponents, (am)n=amn.
512⋅2√10
Step 9.3.1.3
Combine 12 and 2.
522√10
Step 9.3.1.4
Cancel the common factor of 2.
Step 9.3.1.4.1
Cancel the common factor.
522√10
Step 9.3.1.4.2
Rewrite the expression.
51√10
51√10
Step 9.3.1.5
Evaluate the exponent.
5√10
5√10
Step 9.3.2
Multiply 5√10 by √10√10.
5√10⋅√10√10
Step 9.3.3
Combine and simplify the denominator.
Step 9.3.3.1
Multiply 5√10 by √10√10.
5√10√10√10
Step 9.3.3.2
Raise √10 to the power of 1.
5√10√101√10
Step 9.3.3.3
Raise √10 to the power of 1.
5√10√101√101
Step 9.3.3.4
Use the power rule aman=am+n to combine exponents.
5√10√101+1
Step 9.3.3.5
Add 1 and 1.
5√10√102
Step 9.3.3.6
Rewrite √102 as 10.
Step 9.3.3.6.1
Use n√ax=axn to rewrite √10 as 1012.
5√10(1012)2
Step 9.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
5√101012⋅2
Step 9.3.3.6.3
Combine 12 and 2.
5√101022
Step 9.3.3.6.4
Cancel the common factor of 2.
Step 9.3.3.6.4.1
Cancel the common factor.
5√101022
Step 9.3.3.6.4.2
Rewrite the expression.
5√10101
5√10101
Step 9.3.3.6.5
Evaluate the exponent.
5√1010
5√1010
5√1010
Step 9.3.4
Cancel the common factor of 5 and 10.
Step 9.3.4.1
Factor 5 out of 5√10.
5(√10)10
Step 9.3.4.2
Cancel the common factors.
Step 9.3.4.2.1
Factor 5 out of 10.
5√105⋅2
Step 9.3.4.2.2
Cancel the common factor.
5√105⋅2
Step 9.3.4.2.3
Rewrite the expression.
√102
√102
√102
√102
√102
Step 10
The asymptotes follow the form y=±b(x-h)a+k because this hyperbola opens left and right.
y=±1⋅x+0
Step 11
Step 11.1
Add 1⋅x and 0.
y=1⋅x
Step 11.2
Multiply x by 1.
y=x
y=x
Step 12
Step 12.1
Add -1⋅x and 0.
y=-1⋅x
Step 12.2
Rewrite -1x as -x.
y=-x
y=-x
Step 13
This hyperbola has two asymptotes.
y=x,y=-x
Step 14
These values represent the important values for graphing and analyzing a hyperbola.
Center: (0,0)
Vertices: (√5,0),(-√5,0)
Foci: (√10,0),(-√10,0)
Eccentricity: √2
Focal Parameter: √102
Asymptotes: y=x, y=-x
Step 15