Enter a problem...
Algebra Examples
(a2-4)x2-9÷(a2-2a)xy+3y+(2-y)x-3(a2−4)x2−9÷(a2−2a)xy+3y+(2−y)x−3
Step 1
Step 1.1
To divide by a fraction, multiply by its reciprocal.
a2-4x2-9⋅xy+3ya2-2a+2-yx-3
Step 1.2
Simplify the numerator.
Step 1.2.1
Rewrite 4 as 22.
a2-22x2-9⋅xy+3ya2-2a+2-yx-3
Step 1.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=a and b=2.
(a+2)(a-2)x2-9⋅xy+3ya2-2a+2-yx-3
(a+2)(a-2)x2-9⋅xy+3ya2-2a+2-yx-3
Step 1.3
Simplify the denominator.
Step 1.3.1
Rewrite 9 as 32.
(a+2)(a-2)x2-32⋅xy+3ya2-2a+2-yx-3
Step 1.3.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=3.
(a+2)(a-2)(x+3)(x-3)⋅xy+3ya2-2a+2-yx-3
(a+2)(a-2)(x+3)(x-3)⋅xy+3ya2-2a+2-yx-3
Step 1.4
Factor y out of xy+3y.
Step 1.4.1
Factor y out of xy.
(a+2)(a-2)(x+3)(x-3)⋅yx+3ya2-2a+2-yx-3
Step 1.4.2
Factor y out of 3y.
(a+2)(a-2)(x+3)(x-3)⋅yx+y⋅3a2-2a+2-yx-3
Step 1.4.3
Factor y out of yx+y⋅3.
(a+2)(a-2)(x+3)(x-3)⋅y(x+3)a2-2a+2-yx-3
(a+2)(a-2)(x+3)(x-3)⋅y(x+3)a2-2a+2-yx-3
Step 1.5
Factor a out of a2-2a.
Step 1.5.1
Factor a out of a2.
(a+2)(a-2)(x+3)(x-3)⋅y(x+3)a⋅a-2a+2-yx-3
Step 1.5.2
Factor a out of -2a.
(a+2)(a-2)(x+3)(x-3)⋅y(x+3)a⋅a+a⋅-2+2-yx-3
Step 1.5.3
Factor a out of a⋅a+a⋅-2.
(a+2)(a-2)(x+3)(x-3)⋅y(x+3)a(a-2)+2-yx-3
(a+2)(a-2)(x+3)(x-3)⋅y(x+3)a(a-2)+2-yx-3
Step 1.6
Cancel the common factor of a-2.
Step 1.6.1
Factor a-2 out of (a+2)(a-2).
(a-2)(a+2)(x+3)(x-3)⋅y(x+3)a(a-2)+2-yx-3
Step 1.6.2
Factor a-2 out of a(a-2).
(a-2)(a+2)(x+3)(x-3)⋅y(x+3)(a-2)a+2-yx-3
Step 1.6.3
Cancel the common factor.
(a-2)(a+2)(x+3)(x-3)⋅y(x+3)(a-2)a+2-yx-3
Step 1.6.4
Rewrite the expression.
a+2(x+3)(x-3)⋅y(x+3)a+2-yx-3
a+2(x+3)(x-3)⋅y(x+3)a+2-yx-3
Step 1.7
Cancel the common factor of x+3.
Step 1.7.1
Factor x+3 out of y(x+3).
a+2(x+3)(x-3)⋅(x+3)ya+2-yx-3
Step 1.7.2
Cancel the common factor.
a+2(x+3)(x-3)⋅(x+3)ya+2-yx-3
Step 1.7.3
Rewrite the expression.
a+2x-3⋅ya+2-yx-3
a+2x-3⋅ya+2-yx-3
Step 1.8
Multiply a+2x-3 by ya.
(a+2)y(x-3)a+2-yx-3
(a+2)y(x-3)a+2-yx-3
Step 2
To write 2-yx-3 as a fraction with a common denominator, multiply by aa.
(a+2)y(x-3)a+2-yx-3⋅aa
Step 3
Step 3.1
Multiply 2-yx-3 by aa.
(a+2)y(x-3)a+(2-y)a(x-3)a
Step 3.2
Combine the numerators over the common denominator.
(a+2)y+(2-y)a(x-3)a
(a+2)y+(2-y)a(x-3)a
Step 4
Step 4.1
Apply the distributive property.
ay+2y+(2-y)a(x-3)a
Step 4.2
Apply the distributive property.
ay+2y+2a-ya(x-3)a
Step 4.3
Subtract ya from ay.
Step 4.3.1
Move y.
2y+2a+ay-1ay(x-3)a
Step 4.3.2
Subtract ay from ay.
2y+2a+0(x-3)a
2y+2a+0(x-3)a
Step 4.4
Add 2y+2a and 0.
2y+2a(x-3)a
Step 4.5
Factor 2 out of 2y+2a.
Step 4.5.1
Factor 2 out of 2y.
2(y)+2a(x-3)a
Step 4.5.2
Factor 2 out of 2a.
2(y)+2(a)(x-3)a
Step 4.5.3
Factor 2 out of 2(y)+2(a).
2(y+a)(x-3)a
2(y+a)(x-3)a
2(y+a)(x-3)a
Step 5
Reorder factors in 2(y+a)(x-3)a.
2(y+a)a(x-3)