Enter a problem...
Algebra Examples
-4|s+10|<-16−4|s+10|<−16
Step 1
Step 1.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
s+10≥0s+10≥0
Step 1.2
Subtract 1010 from both sides of the inequality.
s≥-10s≥−10
Step 1.3
In the piece where s+10s+10 is non-negative, remove the absolute value.
-4(s+10)<-16−4(s+10)<−16
Step 1.4
To find the interval for the second piece, find where the inside of the absolute value is negative.
s+10<0s+10<0
Step 1.5
Subtract 1010 from both sides of the inequality.
s<-10s<−10
Step 1.6
In the piece where s+10s+10 is negative, remove the absolute value and multiply by -1−1.
-4(-(s+10))<-16−4(−(s+10))<−16
Step 1.7
Write as a piecewise.
{-4(s+10)<-16s≥-10-4(-(s+10))<-16s<-10{−4(s+10)<−16s≥−10−4(−(s+10))<−16s<−10
Step 1.8
Simplify -4(s+10)<-16−4(s+10)<−16.
Step 1.8.1
Apply the distributive property.
{-4s-4⋅10<-16s≥-10-4(-(s+10))<-16s<-10{−4s−4⋅10<−16s≥−10−4(−(s+10))<−16s<−10
Step 1.8.2
Multiply -4−4 by 1010.
{-4s-40<-16s≥-10-4(-(s+10))<-16s<-10{−4s−40<−16s≥−10−4(−(s+10))<−16s<−10
{-4s-40<-16s≥-10-4(-(s+10))<-16s<-10{−4s−40<−16s≥−10−4(−(s+10))<−16s<−10
Step 1.9
Simplify -4(-(s+10))<-16−4(−(s+10))<−16.
Step 1.9.1
Apply the distributive property.
{-4s-40<-16s≥-10-4(-s-1⋅10)<-16s<-10{−4s−40<−16s≥−10−4(−s−1⋅10)<−16s<−10
Step 1.9.2
Multiply -1−1 by 1010.
{-4s-40<-16s≥-10-4(-s-10)<-16s<-10{−4s−40<−16s≥−10−4(−s−10)<−16s<−10
Step 1.9.3
Apply the distributive property.
{-4s-40<-16s≥-10-4(-s)-4⋅-10<-16s<-10{−4s−40<−16s≥−10−4(−s)−4⋅−10<−16s<−10
Step 1.9.4
Multiply -1 by -4.
{-4s-40<-16s≥-104s-4⋅-10<-16s<-10
Step 1.9.5
Multiply -4 by -10.
{-4s-40<-16s≥-104s+40<-16s<-10
{-4s-40<-16s≥-104s+40<-16s<-10
{-4s-40<-16s≥-104s+40<-16s<-10
Step 2
Step 2.1
Move all terms not containing s to the right side of the inequality.
Step 2.1.1
Add 40 to both sides of the inequality.
-4s<-16+40
Step 2.1.2
Add -16 and 40.
-4s<24
-4s<24
Step 2.2
Divide each term in -4s<24 by -4 and simplify.
Step 2.2.1
Divide each term in -4s<24 by -4. When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
-4s-4>24-4
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor of -4.
Step 2.2.2.1.1
Cancel the common factor.
-4s-4>24-4
Step 2.2.2.1.2
Divide s by 1.
s>24-4
s>24-4
s>24-4
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Divide 24 by -4.
s>-6
s>-6
s>-6
s>-6
Step 3
Step 3.1
Move all terms not containing s to the right side of the inequality.
Step 3.1.1
Subtract 40 from both sides of the inequality.
4s<-16-40
Step 3.1.2
Subtract 40 from -16.
4s<-56
4s<-56
Step 3.2
Divide each term in 4s<-56 by 4 and simplify.
Step 3.2.1
Divide each term in 4s<-56 by 4.
4s4<-564
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of 4.
Step 3.2.2.1.1
Cancel the common factor.
4s4<-564
Step 3.2.2.1.2
Divide s by 1.
s<-564
s<-564
s<-564
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Divide -56 by 4.
s<-14
s<-14
s<-14
s<-14
Step 4
Find the union of the solutions.
s<-14 or s>-6
Step 5
The result can be shown in multiple forms.
Inequality Form:
s<-14ors>-6
Interval Notation:
(-∞,-14)∪(-6,∞)
Step 6